Nuprl Lemma : presheaf-app_wf-pscm

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[w:{X ⊢ _:ΠB}]. ∀[H:ps_context{j:l}(C)].
[tau:psc_map{j:l}(C; H; X)]. ∀[u:{H ⊢ _:(A)tau}].
  (app((w)tau; u) ∈ {H ⊢ _:((B)tau+)[u]})


Proof




Definitions occuring in Statement :  presheaf-app: app(w; u) presheaf-pi: ΠB pscm+: tau+ pscm-id-adjoin: [u] psc-adjoin: X.A pscm-ap-term: (t)s presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat all: x:A. B[x] cat-comp: cat-comp(C) compose: g uimplies: supposing a squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q pscm+: tau+
Lemmas referenced :  presheaf-app_wf small-category-cumulativity-2 ps_context_cumulativity2 pscm-ap-type_wf presheaf-type-cumulativity2 psc-adjoin_wf pscm+_wf subtype_rel_self psc_map_wf pscm-ap-term_wf presheaf-pi_wf subtype_rel-equal presheaf-term_wf equal_wf squash_wf true_wf istype-universe pscm-presheaf-pi iff_weakening_equal presheaf-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache independent_isectElimination lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType universeEquality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination axiomEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:\mPi{}A  B\}].
\mforall{}[H:ps\_context\{j:l\}(C)].  \mforall{}[tau:psc\_map\{j:l\}(C;  H;  X)].  \mforall{}[u:\{H  \mvdash{}  \_:(A)tau\}].
    (app((w)tau;  u)  \mmember{}  \{H  \mvdash{}  \_:((B)tau+)[u]\})



Date html generated: 2020_05_20-PM-01_31_09
Last ObjectModification: 2020_04_02-PM-03_02_42

Theory : presheaf!models!of!type!theory


Home Index