Nuprl Lemma : pscm-presheaf-pi

C:SmallCategory. ∀X,Delta:ps_context{j:l}(C). ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀s:psc_map{j:l}(C; Delta; X).
  ((ΠB)s Delta ⊢ Π(A)s (B)(s p;q) ∈ {Delta ⊢ _})


Proof




Definitions occuring in Statement :  presheaf-pi: ΠB pscm-adjoin: (s;u) psc-snd: q psc-fst: p psc-adjoin: X.A pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} pscm-comp: F psc_map: A ⟶ B ps_context: __⊢ all: x:A. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) pi1: fst(t) op-cat: op-cat(C) spreadn: spread4 cat-arrow: cat-arrow(C) pi2: snd(t) type-cat: TypeCat cat-comp: cat-comp(C) compose: g presheaf-type: {X ⊢ _} psc-snd: q pscm-ap-type: (AF)s psc-fst: p pscm-comp: F pscm-ap: (s)x uimplies: supposing a presheaf-pi: ΠB presheaf-pi-family: presheaf-pi-family(C; X; A; B; I; a)
Lemmas referenced :  presheaf-type-equal pscm-ap-type_wf presheaf-pi_wf psc-adjoin_wf ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-adjoin_wf pscm-comp_wf psc-fst_wf subtype_rel_self psc_map_wf psc-snd_wf small-category-cumulativity-2 presheaf-type_wf ps_context_wf small-category_wf I_set_wf cat-ob_wf pscm-presheaf-pi-family presheaf-pi-family_wf pscm-ap_wf cat-arrow_wf presheaf-pi-family-comp psc-restriction_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache instantiate applyEquality sqequalRule setElimination rename productElimination equalityTransitivity equalitySymmetry independent_isectElimination universeIsType inhabitedIsType dependent_pairEquality_alt lambdaEquality_alt dependent_functionElimination functionIsType

Latex:
\mforall{}C:SmallCategory.  \mforall{}X,Delta:ps\_context\{j:l\}(C).  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.
\mforall{}s:psc\_map\{j:l\}(C;  Delta;  X).
    ((\mPi{}A  B)s  =  Delta  \mvdash{}  \mPi{}(A)s  (B)(s  o  p;q))



Date html generated: 2020_05_20-PM-01_29_19
Last ObjectModification: 2020_04_02-PM-03_08_43

Theory : presheaf!models!of!type!theory


Home Index