Nuprl Lemma : presheaf-fun-equal2

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A,B:{X ⊢ _}]. ∀[f:{X ⊢ _:(A ⟶ B)}]. ∀[g:I:cat-ob(C)
                                                                                        ⟶ a:X(I)
                                                                                        ⟶ J:cat-ob(C)
                                                                                        ⟶ h:(cat-arrow(C) I)
                                                                                        ⟶ u:A(h(a))
                                                                                        ⟶ B(h(a))].
  g ∈ {X ⊢ _:(A ⟶ B)} 
  supposing ∀[I:cat-ob(C)]. ∀[a:X(I)]. ∀[J:cat-ob(C)]. ∀[h:cat-arrow(C) I]. ∀[u:A(h(a))].
              ((f(a) u) (g(a) u) ∈ B(h(a)))


Proof




Definitions occuring in Statement :  presheaf-fun: (A ⟶ B) presheaf-term-at: u(a) presheaf-term: {X ⊢ _:A} presheaf-type-at: A(a) presheaf-type: {X ⊢ _} psc-restriction: f(s) I_set: A(I) ps_context: __⊢ uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] equal: t ∈ T cat-arrow: cat-arrow(C) cat-ob: cat-ob(C) small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B presheaf-term: {X ⊢ _:A} presheaf-term-at: u(a) presheaf-fun: (A ⟶ B) all: x:A. B[x] presheaf-fun-family: presheaf-fun-family(C; X; A; B; I; a) squash: T true: True prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  cat-ob_wf I_set_wf cat-arrow_wf presheaf-type-at_wf psc-restriction_wf presheaf-term_wf presheaf-fun_wf presheaf-type_wf ps_context_wf small-category-cumulativity-2 small-category_wf presheaf-fun-equal presheaf_type_at_pair_lemma presheaf_type_ap_morph_pair_lemma presheaf-type-ap-morph_wf cat-comp_wf subtype_rel-equal psc-restriction-comp equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal presheaf-term-at-morph presheaf-term-at_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt functionIsType universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache applyEquality instantiate sqequalRule independent_isectElimination dependent_set_memberEquality_alt functionExtensionality setElimination rename dependent_functionElimination Error :memTop,  lambdaFormation_alt inhabitedIsType equalityIstype lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed equalitySymmetry equalityTransitivity universeEquality productElimination independent_functionElimination applyLambdaEquality isectIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A,B:\{X  \mvdash{}  \_\}].  \mforall{}[f:\{X  \mvdash{}  \_:(A  {}\mrightarrow{}  B)\}].
\mforall{}[g:I:cat-ob(C)  {}\mrightarrow{}  a:X(I)  {}\mrightarrow{}  J:cat-ob(C)  {}\mrightarrow{}  h:(cat-arrow(C)  J  I)  {}\mrightarrow{}  u:A(h(a))  {}\mrightarrow{}  B(h(a))].
    f  =  g 
    supposing  \mforall{}[I:cat-ob(C)].  \mforall{}[a:X(I)].  \mforall{}[J:cat-ob(C)].  \mforall{}[h:cat-arrow(C)  J  I].  \mforall{}[u:A(h(a))].
                            ((f(a)  J  h  u)  =  (g(a)  J  h  u))



Date html generated: 2020_05_20-PM-01_29_51
Last ObjectModification: 2020_04_02-PM-06_22_58

Theory : presheaf!models!of!type!theory


Home Index