Nuprl Lemma : Minkowski-inequality2
∀[n:ℕ]. ∀[x,y:ℝ^n]. (||x - y|| ≤ (||x|| + ||y||))
Proof
Definitions occuring in Statement :
real-vec-norm: ||x||
,
real-vec-sub: X - Y
,
real-vec: ℝ^n
,
rleq: x ≤ y
,
radd: a + b
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
all: ∀x:A. B[x]
,
le: A ≤ B
,
and: P ∧ Q
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
subtype_rel: A ⊆r B
,
real: ℝ
,
prop: ℙ
,
true: True
,
absval: |i|
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
squash: ↓T
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_uimplies: rev_uimplies(P;Q)
,
rge: x ≥ y
,
real-vec-mul: a*X
,
real-vec-add: X + Y
,
real-vec-sub: X - Y
,
req-vec: req-vec(n;x;y)
,
nat: ℕ
,
real-vec: ℝ^n
,
rsub: x - y
Lemmas referenced :
rminus-as-rmul,
req_inversion,
req_functionality,
rminus_wf,
int_seg_wf,
real-vec-norm_functionality,
rleq_weakening,
rleq_weakening_equal,
rleq_functionality_wrt_implies,
rmul-one-both,
iff_weakening_equal,
rabs-int,
true_wf,
squash_wf,
rleq_wf,
real-vec-norm-mul,
radd_functionality,
req_weakening,
rleq_functionality,
rabs_wf,
rmul_wf,
real-vec-add_wf,
nat_wf,
real-vec_wf,
nat_plus_wf,
real_wf,
real-vec-sub_wf,
real-vec-norm_wf,
radd_wf,
rsub_wf,
less_than'_wf,
int-to-real_wf,
real-vec-mul_wf,
Minkowski-inequality1
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
minusEquality,
natural_numberEquality,
hypothesis,
sqequalRule,
lambdaEquality,
dependent_functionElimination,
productElimination,
independent_pairEquality,
because_Cache,
applyEquality,
setElimination,
rename,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
isect_memberEquality,
voidElimination,
callbyvalueReduce,
sqleReflexivity,
independent_isectElimination,
imageElimination,
imageMemberEquality,
baseClosed,
universeEquality,
independent_functionElimination,
lambdaFormation
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[x,y:\mBbbR{}\^{}n]. (||x - y|| \mleq{} (||x|| + ||y||))
Date html generated:
2016_05_18-AM-09_50_29
Last ObjectModification:
2016_01_17-AM-02_51_51
Theory : reals
Home
Index