Nuprl Lemma : Minkowski-inequality2

[n:ℕ]. ∀[x,y:ℝ^n].  (||x y|| ≤ (||x|| ||y||))


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| real-vec-sub: Y real-vec: ^n rleq: x ≤ y radd: b nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: true: True absval: |i| uimplies: supposing a uiff: uiff(P;Q) squash: T guard: {T} iff: ⇐⇒ Q rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y real-vec-mul: a*X real-vec-add: Y real-vec-sub: Y req-vec: req-vec(n;x;y) nat: real-vec: ^n rsub: y
Lemmas referenced :  rminus-as-rmul req_inversion req_functionality rminus_wf int_seg_wf real-vec-norm_functionality rleq_weakening rleq_weakening_equal rleq_functionality_wrt_implies rmul-one-both iff_weakening_equal rabs-int true_wf squash_wf rleq_wf real-vec-norm-mul radd_functionality req_weakening rleq_functionality rabs_wf rmul_wf real-vec-add_wf nat_wf real-vec_wf nat_plus_wf real_wf real-vec-sub_wf real-vec-norm_wf radd_wf rsub_wf less_than'_wf int-to-real_wf real-vec-mul_wf Minkowski-inequality1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality minusEquality natural_numberEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality because_Cache applyEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination callbyvalueReduce sqleReflexivity independent_isectElimination imageElimination imageMemberEquality baseClosed universeEquality independent_functionElimination lambdaFormation

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (||x  -  y||  \mleq{}  (||x||  +  ||y||))



Date html generated: 2016_05_18-AM-09_50_29
Last ObjectModification: 2016_01_17-AM-02_51_51

Theory : reals


Home Index