Nuprl Lemma : Minkowski-inequality1
∀[n:ℕ]. ∀[x,y:ℝ^n].  (||x + y|| ≤ (||x|| + ||y||))
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||, 
real-vec-add: X + Y, 
real-vec: ℝ^n, 
rleq: x ≤ y, 
radd: a + b, 
nat: ℕ, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
nat_plus: ℕ+, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
and: P ∧ Q, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
not: ¬A, 
false: False, 
subtype_rel: A ⊆r B, 
real: ℝ, 
cand: A c∧ B, 
nat: ℕ, 
uimplies: b supposing a, 
rev_uimplies: rev_uimplies(P;Q), 
rge: x ≥ y, 
guard: {T}, 
uiff: uiff(P;Q), 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
real_term_value: real_term_value(f;t), 
int_term_ind: int_term_ind, 
itermSubtract: left (-) right, 
itermAdd: left (+) right, 
itermVar: vvar, 
itermMultiply: left (*) right, 
top: Top
Lemmas referenced : 
rnexp-rleq-iff, 
real-vec-norm_wf, 
real-vec-add_wf, 
radd_wf, 
real-vec-norm-nonneg, 
radd-non-neg, 
less_than_wf, 
less_than'_wf, 
rsub_wf, 
real_wf, 
nat_plus_wf, 
real-vec_wf, 
nat_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
rmul_wf, 
int-to-real_wf, 
dot-product_wf, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
rleq_transitivity, 
rleq_weakening, 
radd_functionality_wrt_rleq, 
req_inversion, 
req_functionality, 
req_transitivity, 
real-vec-norm-squared, 
dot-product-linearity1, 
radd_functionality, 
req_weakening, 
dot-product-comm, 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
rmul_functionality, 
radd_comm, 
rmul-assoc, 
radd-int, 
rmul-identity1, 
rmul-distrib2, 
radd-assoc, 
rmul_comm, 
rmul-distrib, 
uiff_transitivity, 
rnexp2, 
req_wf, 
Cauchy-Schwarz, 
rmul_preserves_rleq2, 
rabs_wf, 
rleq-int, 
rleq_wf, 
rleq_functionality, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
equal_wf, 
rminus_wf, 
rleq-rmax, 
rabs-as-rmax
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
productElimination, 
lambdaEquality, 
independent_pairEquality, 
applyEquality, 
setElimination, 
rename, 
minusEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
lambdaFormation, 
independent_isectElimination, 
computeAll, 
int_eqEquality, 
intEquality, 
addEquality, 
voidEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (||x  +  y||  \mleq{}  (||x||  +  ||y||))
Date html generated:
2017_10_03-AM-10_54_58
Last ObjectModification:
2017_07_28-AM-08_20_41
Theory : reals
Home
Index