Nuprl Lemma : component-rleq-real-vec-norm

n:ℕ. ∀i:ℕn. ∀x:ℝ^n.  (|x i| ≤ ||x||)


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| real-vec: ^n rleq: x ≤ y rabs: |x| int_seg: {i..j-} nat: all: x:A. B[x] apply: a natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] real-vec: ^n implies:  Q nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) not: ¬A false: False int_seg: {i..j-} lelt: i ≤ j < k uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) dot-product: x⋅y less_than: a < b squash: T so_lambda: λ2x.t[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: so_apply: x[s] guard: {T}
Lemmas referenced :  square-rleq-implies rabs_wf real-vec-norm_wf real-vec-norm-nonneg real-vec_wf int_seg_wf istype-nat rnexp_wf istype-void istype-le dot-product_wf rmul_wf rleq_functionality req_weakening real-vec-norm-squared rabs-rnexp2 rnexp2 item-rleq-rsum-of-nonneg subtract_wf int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf itermSubtract_wf int_formula_prop_less_lemma int_term_value_add_lemma int_term_value_subtract_lemma istype-less_than square-nonneg subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination applyEquality hypothesisEquality hypothesis independent_functionElimination universeIsType natural_numberEquality setElimination rename dependent_set_memberEquality_alt independent_pairFormation sqequalRule voidElimination productElimination because_Cache independent_isectElimination imageElimination lambdaEquality_alt unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt productIsType addEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbN{}n.  \mforall{}x:\mBbbR{}\^{}n.    (|x  i|  \mleq{}  ||x||)



Date html generated: 2019_10_30-AM-08_07_08
Last ObjectModification: 2019_06_26-PM-00_43_28

Theory : reals


Home Index