Nuprl Lemma : m-reg-test_wf

[X:Type]
  ∀d:metric(X). ∀b:ℕ. ∀s:ℕb ⟶ X. ∀x:X.
    (m-reg-test(d;b;s;x) ∈ (∃n:ℕb. (((r(2)/r(n 1)) (r(2)/r(b 1))) < mdist(d;s n;x)))
     ∨ (∀n:ℕb. (mdist(d;s n;x) < ((r(3)/r(n 1)) (r(3)/r(b 1))))))


Proof




Definitions occuring in Statement :  m-reg-test: m-reg-test(d;b;s;x) mdist: mdist(d;x;y) metric: metric(X) rdiv: (x/y) rless: x < y radd: b int-to-real: r(n) int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] or: P ∨ Q member: t ∈ T apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] m-reg-test: m-reg-test(d;b;s;x) nat: so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_apply: x[s] nat_plus: + uiff: uiff(P;Q)
Lemmas referenced :  int-seg-case_wf rless_wf radd_wf rdiv_wf int-to-real_wf rless-int int_seg_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermAdd_wf itermVar_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf mdist_wf rless-case_wf rlessw_wf int_seg_wf istype-nat metric_wf istype-universe radd_functionality_wrt_rless1 rleq-int-fractions istype-less_than decidable__le itermMultiply_wf int_term_value_mul_lemma rless-int-fractions
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion natural_numberEquality setElimination rename because_Cache hypothesis lambdaEquality_alt addEquality independent_isectElimination inrFormation_alt dependent_functionElimination productElimination independent_functionElimination imageElimination hypothesisEquality unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType applyEquality functionIsType axiomEquality equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType instantiate universeEquality dependent_set_memberEquality_alt multiplyEquality

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}b:\mBbbN{}.  \mforall{}s:\mBbbN{}b  {}\mrightarrow{}  X.  \mforall{}x:X.
        (m-reg-test(d;b;s;x)  \mmember{}  (\mexists{}n:\mBbbN{}b.  (((r(2)/r(n  +  1))  +  (r(2)/r(b  +  1)))  <  mdist(d;s  n;x)))
          \mvee{}  (\mforall{}n:\mBbbN{}b.  (mdist(d;s  n;x)  <  ((r(3)/r(n  +  1))  +  (r(3)/r(b  +  1))))))



Date html generated: 2019_10_30-AM-06_59_49
Last ObjectModification: 2019_10_09-AM-08_58_55

Theory : reals


Home Index