Nuprl Lemma : m-reg-test_wf
∀[X:Type]
  ∀d:metric(X). ∀b:ℕ. ∀s:ℕb ⟶ X. ∀x:X.
    (m-reg-test(d;b;s;x) ∈ (∃n:ℕb. (((r(2)/r(n + 1)) + (r(2)/r(b + 1))) < mdist(d;s n;x)))
     ∨ (∀n:ℕb. (mdist(d;s n;x) < ((r(3)/r(n + 1)) + (r(3)/r(b + 1))))))
Proof
Definitions occuring in Statement : 
m-reg-test: m-reg-test(d;b;s;x)
, 
mdist: mdist(d;x;y)
, 
metric: metric(X)
, 
rdiv: (x/y)
, 
rless: x < y
, 
radd: a + b
, 
int-to-real: r(n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
m-reg-test: m-reg-test(d;b;s;x)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
Lemmas referenced : 
int-seg-case_wf, 
rless_wf, 
radd_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
mdist_wf, 
rless-case_wf, 
rlessw_wf, 
int_seg_wf, 
istype-nat, 
metric_wf, 
istype-universe, 
radd_functionality_wrt_rless1, 
rleq-int-fractions, 
istype-less_than, 
decidable__le, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
rless-int-fractions
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
lambdaEquality_alt, 
addEquality, 
independent_isectElimination, 
inrFormation_alt, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
imageElimination, 
hypothesisEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
functionIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality, 
dependent_set_memberEquality_alt, 
multiplyEquality
Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}b:\mBbbN{}.  \mforall{}s:\mBbbN{}b  {}\mrightarrow{}  X.  \mforall{}x:X.
        (m-reg-test(d;b;s;x)  \mmember{}  (\mexists{}n:\mBbbN{}b.  (((r(2)/r(n  +  1))  +  (r(2)/r(b  +  1)))  <  mdist(d;s  n;x)))
          \mvee{}  (\mforall{}n:\mBbbN{}b.  (mdist(d;s  n;x)  <  ((r(3)/r(n  +  1))  +  (r(3)/r(b  +  1))))))
Date html generated:
2019_10_30-AM-06_59_49
Last ObjectModification:
2019_10_09-AM-08_58_55
Theory : reals
Home
Index