Nuprl Lemma : int-seg-case_wf
∀[i,j:ℤ]. ∀[F,G:{i..j-} ⟶ ℙ]. ∀[d:∀k:{i..j-}. (F[k] ∨ G[k])].
  (int-seg-case(i;j;d) ∈ (∃k:{i..j-}. F[k]) ∨ (∀k:{i..j-}. G[k]))
Proof
Definitions occuring in Statement : 
int-seg-case: int-seg-case(i;j;d), 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
member: t ∈ T, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
so_lambda: λ2x.t[x], 
nat_plus: ℕ+, 
bfalse: ff, 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
exposed-it: exposed-it, 
le_int: i ≤z j, 
lt_int: i <z j, 
ifthenelse: if b then t else f fi , 
bnot: ¬bb, 
label: ...$L... t, 
sq_type: SQType(T), 
gt: i > j, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
subtract: n - m, 
uiff: uiff(P;Q), 
sq_stable: SqStable(P), 
le: A ≤ B, 
ge: i ≥ j , 
nat: ℕ, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
exists: ∃x:A. B[x], 
uimplies: b supposing a, 
guard: {T}, 
lelt: i ≤ j < k, 
cand: A c∧ B, 
int_seg: {i..j-}, 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
squash: ↓T, 
true: True, 
top: Top, 
less_than': less_than'(a;b), 
and: P ∧ Q, 
less_than: a < b, 
or: P ∨ Q, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
int-seg-case: int-seg-case(i;j;d), 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
minus-minus, 
not-equal-2, 
decidable__int_equal, 
and_wf, 
set_subtype_base, 
omega-shadow, 
mul-distributes-right, 
two-mul, 
one-mul, 
le_reflexive, 
le-add-cancel-alt, 
not-lt-2, 
add-is-int-iff, 
assert_of_le_int, 
true_wf, 
squash_wf, 
eqff_to_assert, 
uiff_transitivity2, 
assert_of_lt_int, 
eqtt_to_assert, 
uiff_transitivity, 
bnot_wf, 
le_wf, 
le_int_wf, 
assert_wf, 
bool_wf, 
equal-wf-base, 
lt_int_wf, 
istype-int, 
subtype_rel_self, 
int_subtype_base, 
subtype_base_sq, 
add-zero, 
zero-mul, 
add-mul-special, 
not-gt-2, 
subtract_nat_wf, 
istype-nat, 
primrec-unroll, 
le-add-cancel2, 
not-le-2, 
istype-false, 
subtract_wf, 
decidable__le, 
subtract-1-ge-0, 
istype-le, 
int_seg_wf, 
le-add-cancel, 
add-commutes, 
add_functionality_wrt_le, 
zero-add, 
add-associates, 
minus-one-mul-top, 
add-swap, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
less-iff-le, 
sq_stable__le, 
primrec0_lemma, 
istype-less_than, 
ge_wf, 
nat_properties, 
less_than_wf, 
less_than_irreflexivity, 
le_weakening2, 
less_than_transitivity2, 
less_than_transitivity1, 
istype-void, 
istype-top, 
decidable__lt
Rules used in proof : 
functionExtensionality, 
dependent_pairEquality_alt, 
inlEquality_alt, 
equalityElimination, 
closedConclusion, 
baseApply, 
universeEquality, 
unionIsType, 
functionIsType, 
intEquality, 
cumulativity, 
instantiate, 
multiplyEquality, 
equalityIstype, 
dependent_set_memberEquality_alt, 
minusEquality, 
addEquality, 
functionIsTypeImplies, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
intWeakElimination, 
applyEquality, 
universeIsType, 
productIsType, 
because_Cache, 
independent_isectElimination, 
rename, 
setElimination, 
lambdaEquality_alt, 
inrEquality_alt, 
independent_functionElimination, 
productElimination, 
imageElimination, 
lambdaFormation_alt, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
voidElimination, 
independent_pairFormation, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
inhabitedIsType, 
axiomSqEquality, 
isectElimination, 
lessCases, 
sqequalRule, 
unionElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[i,j:\mBbbZ{}].  \mforall{}[F,G:\{i..j\msupminus{}\}  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[d:\mforall{}k:\{i..j\msupminus{}\}.  (F[k]  \mvee{}  G[k])].
    (int-seg-case(i;j;d)  \mmember{}  (\mexists{}k:\{i..j\msupminus{}\}.  F[k])  \mvee{}  (\mforall{}k:\{i..j\msupminus{}\}.  G[k]))
Date html generated:
2019_10_15-AM-10_19_53
Last ObjectModification:
2019_10_02-PM-06_04_50
Theory : call!by!value_2
Home
Index