Nuprl Lemma : radd-list-append

[L1,L2:ℝ List].  (radd-list(L1 L2) (radd-list(L1) radd-list(L2)))


Proof




Definitions occuring in Statement :  req: y radd: b radd-list: radd-list(L) real: append: as bs list: List uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] implies:  Q append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] prop: and: P ∧ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  list_induction real_wf uall_wf list_wf req_wf radd-list_wf-bag append_wf list-subtype-bag subtype_rel_self radd_wf list_ind_nil_lemma radd_list_nil_lemma req_witness int-to-real_wf list_ind_cons_lemma cons_wf req_weakening req_functionality radd-zero-both req_transitivity radd-list-cons radd_functionality uiff_transitivity req_inversion radd-assoc radd-ac radd_comm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesis sqequalRule lambdaEquality hypothesisEquality applyEquality because_Cache independent_isectElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality natural_numberEquality lambdaFormation rename productElimination

Latex:
\mforall{}[L1,L2:\mBbbR{}  List].    (radd-list(L1  @  L2)  =  (radd-list(L1)  +  radd-list(L2)))



Date html generated: 2017_10_02-PM-07_15_39
Last ObjectModification: 2017_07_28-AM-07_20_35

Theory : reals


Home Index