Nuprl Lemma : radd-list-append
∀[L1,L2:ℝ List].  (radd-list(L1 @ L2) = (radd-list(L1) + radd-list(L2)))
Proof
Definitions occuring in Statement : 
req: x = y
, 
radd: a + b
, 
radd-list: radd-list(L)
, 
real: ℝ
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
append: as @ bs
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
prop: ℙ
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
list_induction, 
real_wf, 
uall_wf, 
list_wf, 
req_wf, 
radd-list_wf-bag, 
append_wf, 
list-subtype-bag, 
subtype_rel_self, 
radd_wf, 
list_ind_nil_lemma, 
radd_list_nil_lemma, 
req_witness, 
int-to-real_wf, 
list_ind_cons_lemma, 
cons_wf, 
req_weakening, 
req_functionality, 
radd-zero-both, 
req_transitivity, 
radd-list-cons, 
radd_functionality, 
uiff_transitivity, 
req_inversion, 
radd-assoc, 
radd-ac, 
radd_comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
lambdaFormation, 
rename, 
productElimination
Latex:
\mforall{}[L1,L2:\mBbbR{}  List].    (radd-list(L1  @  L2)  =  (radd-list(L1)  +  radd-list(L2)))
Date html generated:
2017_10_02-PM-07_15_39
Last ObjectModification:
2017_07_28-AM-07_20_35
Theory : reals
Home
Index