Nuprl Lemma : rcp_functionality

[a1,b1,a2,b2:ℝ^3].  (req-vec(3;(a1 b1);(a2 b2))) supposing (req-vec(3;b1;b2) and req-vec(3;a1;a2))


Proof




Definitions occuring in Statement :  rcp: (a b) req-vec: req-vec(n;x;y) real-vec: ^n uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  rcp: (a b) req-vec: req-vec(n;x;y) real-vec: ^n uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} select: L[n] cons: [a b] subtract: m lelt: i ≤ j < k and: P ∧ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties int_seg_subtype_special int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf req_witness select_wf real_wf cons_wf rsub_wf rmul_wf decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt istype-le istype-less_than nil_wf length_of_cons_lemma length_of_nil_lemma itermAdd_wf int_term_value_add_lemma req_wf req_weakening req_functionality rsub_functionality rmul_functionality
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut lambdaFormation_alt extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination equalityTransitivity equalitySymmetry hypothesis_subsumption productElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType applyEquality dependent_set_memberEquality_alt productIsType addEquality functionIsTypeImplies inhabitedIsType functionIsType isectIsTypeImplies

Latex:
\mforall{}[a1,b1,a2,b2:\mBbbR{}\^{}3].
    (req-vec(3;(a1  x  b1);(a2  x  b2)))  supposing  (req-vec(3;b1;b2)  and  req-vec(3;a1;a2))



Date html generated: 2019_10_30-AM-08_56_23
Last ObjectModification: 2018_12_11-AM-10_54_48

Theory : reals


Home Index