Nuprl Lemma : rneq-iff
∀x,y:ℝ.  (x ≠ y ⇐⇒ ∃n:ℕ+. 4 < |(x n) - y n|)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y, 
real: ℝ, 
absval: |i|, 
nat_plus: ℕ+, 
less_than: a < b, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
apply: f a, 
subtract: n - m, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
rneq: x ≠ y, 
rless: x < y, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
or: P ∨ Q, 
sq_exists: ∃x:{A| B[x]}, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
real: ℝ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
prop: ℙ, 
nat_plus: ℕ+, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
decidable: Dec(P), 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
nat: ℕ, 
le: A ≤ B, 
gt: i > j
Lemmas referenced : 
absval_unfold, 
subtract_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
nat_plus_properties, 
add-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
false_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
decidable__lt, 
intformnot_wf, 
itermMinus_wf, 
int_formula_prop_not_lemma, 
int_term_value_minus_lemma, 
absval_wf, 
or_wf, 
sq_exists_wf, 
nat_plus_wf, 
absval_lbound, 
le_wf, 
subtract-is-int-iff, 
exists_wf, 
nat_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
setElimination, 
rename, 
dependent_pairFormation, 
hypothesisEquality, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
because_Cache, 
hypothesis, 
minusEquality, 
natural_numberEquality, 
equalityElimination, 
productElimination, 
independent_isectElimination, 
lessCases, 
isect_memberFormation, 
sqequalAxiom, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
baseApply, 
closedConclusion, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
dependent_set_memberEquality, 
addEquality, 
inlFormation, 
dependent_set_memberFormation, 
inrFormation
Latex:
\mforall{}x,y:\mBbbR{}.    (x  \mneq{}  y  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  4  <  |(x  n)  -  y  n|)
Date html generated:
2017_10_03-AM-08_26_57
Last ObjectModification:
2017_08_30-PM-03_15_44
Theory : reals
Home
Index