Nuprl Lemma : integral-equal-endpoints
∀I:Interval. ∀f:{f:I ⟶ℝ| ∀x,y:{a:ℝ| a ∈ I} .  ((x = y) ⇒ ((f x) = (f y)))} . ∀a,b:{a:ℝ| a ∈ I} .
  ((a = b) ⇒ (a_∫-b f[t] dt = r0))
Proof
Definitions occuring in Statement : 
integral: a_∫-b f[x] dx, 
rfun: I ⟶ℝ, 
i-member: r ∈ I, 
interval: Interval, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rfun: I ⟶ℝ, 
sq_stable: SqStable(P), 
squash: ↓T, 
subinterval: I ⊆ J , 
top: Top, 
and: P ∧ Q, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b), 
iff: P ⇐⇒ Q, 
guard: {T}, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
integral-same-endpoints, 
req_wf, 
set_wf, 
real_wf, 
i-member_wf, 
rfun_wf, 
all_wf, 
interval_wf, 
rmin-rmax-subinterval, 
sq_stable__i-member, 
member_rccint_lemma, 
rmin-rleq, 
rleq-rmax, 
subtype_rel_sets, 
rccint_wf, 
rmin_wf, 
rmax_wf, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
ifun_wf, 
rccint-icompact, 
rmin-rleq-rmax, 
integral_wf, 
int-to-real_wf, 
req_functionality, 
integral_functionality_endpoints, 
req_inversion, 
req_weakening
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
setEquality, 
functionEquality, 
applyEquality, 
dependent_set_memberEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
independent_pairFormation, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality
Latex:
\mforall{}I:Interval.  \mforall{}f:\{f:I  {}\mrightarrow{}\mBbbR{}|  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  ((f  x)  =  (f  y)))\}  .  \mforall{}a,b:\{a:\mBbbR{}|  a  \mmember{}  I\}  .
    ((a  =  b)  {}\mRightarrow{}  (a\_\mint{}\msupminus{}b  f[t]  dt  =  r0))
Date html generated:
2016_10_26-PM-00_08_31
Last ObjectModification:
2016_09_12-PM-05_39_00
Theory : reals_2
Home
Index