Nuprl Lemma : integral-same-endpoints
∀I:Interval. ∀f:{f:I ⟶ℝ| ∀x,y:{a:ℝ| a ∈ I} .  ((x = y) ⇒ ((f x) = (f y)))} . ∀a:{a:ℝ| a ∈ I} .  (a_∫-a f[t] dt = r0)
Proof
Definitions occuring in Statement : 
integral: a_∫-b f[x] dx, 
rfun: I ⟶ℝ, 
i-member: r ∈ I, 
interval: Interval, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
implies: P ⇒ Q, 
rfun: I ⟶ℝ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
top: Top, 
guard: {T}, 
subinterval: I ⊆ J , 
ifun: ifun(f;I), 
real-fun: real-fun(f;a;b), 
i-finite: i-finite(I), 
rccint: [l, u], 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
integrate: a_∫- f[t] dt
Lemmas referenced : 
set_wf, 
real_wf, 
i-member_wf, 
rfun_wf, 
all_wf, 
req_wf, 
interval_wf, 
rcc-subinterval, 
rleq_wf, 
subtype_rel_sets, 
rccint_wf, 
member_rccint_lemma, 
ifun_wf, 
rccint-icompact, 
rleq_weakening_equal, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
left-endpoint_wf, 
right-endpoint_wf, 
int-to-real_wf, 
req_weakening, 
req_functionality, 
integral-single, 
integrate_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
setEquality, 
because_Cache, 
setElimination, 
rename, 
functionEquality, 
applyEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
independent_pairFormation, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productEquality, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}I:Interval.  \mforall{}f:\{f:I  {}\mrightarrow{}\mBbbR{}|  \mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  ((f  x)  =  (f  y)))\}  .  \mforall{}a:\{a:\mBbbR{}|  a  \mmember{}  I\}  .
    (a\_\mint{}\msupminus{}a  f[t]  dt  =  r0)
Date html generated:
2016_10_26-PM-00_08_25
Last ObjectModification:
2016_09_12-PM-05_38_58
Theory : reals_2
Home
Index