Nuprl Lemma : wqo-less_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[bs,as:n:ℕ × (ℕn ⟶ T)].  (wqo-less(T;x,y.R[x;y];bs;as) ∈ ℙ)
Proof
Definitions occuring in Statement : 
wqo-less: wqo-less(T;x,y.R[x; y];bs;as)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
wqo-less: wqo-less(T;x,y.R[x; y];bs;as)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
sq_type: SQType(T)
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
equal_wf, 
int_seg_wf, 
seq-add_wf, 
decidable__lt, 
false_wf, 
not-lt-2, 
le_antisymmetry_iff, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
nat_wf, 
le-add-cancel, 
and_wf, 
le_wf, 
less_than_wf, 
subtype_base_sq, 
int_subtype_base, 
subtype_rel_self, 
all_wf, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
productElimination, 
productEquality, 
intEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
addEquality, 
natural_numberEquality, 
functionEquality, 
functionExtensionality, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
lambdaFormation, 
voidElimination, 
independent_functionElimination, 
independent_isectElimination, 
isect_memberEquality, 
voidEquality, 
minusEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[bs,as:n:\mBbbN{}  \mtimes{}  (\mBbbN{}n  {}\mrightarrow{}  T)].    (wqo-less(T;x,y.R[x;y];bs;as)  \mmember{}  \mBbbP{})
Date html generated:
2017_04_14-AM-07_29_07
Last ObjectModification:
2017_02_27-PM-02_57_06
Theory : bar-induction
Home
Index