Nuprl Lemma : wqo-less_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[bs,as:n:ℕ × (ℕn ⟶ T)].  (wqo-less(T;x,y.R[x;y];bs;as) ∈ ℙ)


Proof




Definitions occuring in Statement :  wqo-less: wqo-less(T;x,y.R[x; y];bs;as) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T wqo-less: wqo-less(T;x,y.R[x; y];bs;as) so_lambda: λ2x.t[x] prop: and: P ∧ Q nat: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q not: ¬A rev_implies:  Q implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a guard: {T} subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True sq_type: SQType(T) so_apply: x[s1;s2] so_apply: x[s]
Lemmas referenced :  exists_wf equal_wf int_seg_wf seq-add_wf decidable__lt false_wf not-lt-2 le_antisymmetry_iff condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le nat_wf le-add-cancel and_wf le_wf less_than_wf subtype_base_sq int_subtype_base subtype_rel_self all_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality productElimination productEquality intEquality setElimination rename because_Cache hypothesis addEquality natural_numberEquality functionEquality functionExtensionality applyEquality dependent_set_memberEquality independent_pairFormation dependent_functionElimination unionElimination lambdaFormation voidElimination independent_functionElimination independent_isectElimination isect_memberEquality voidEquality minusEquality instantiate equalityTransitivity equalitySymmetry axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[bs,as:n:\mBbbN{}  \mtimes{}  (\mBbbN{}n  {}\mrightarrow{}  T)].    (wqo-less(T;x,y.R[x;y];bs;as)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_14-AM-07_29_07
Last ObjectModification: 2017_02_27-PM-02_57_06

Theory : bar-induction


Home Index