Nuprl Lemma : Wadd-Wzero

[A:Type]. ∀[B:A ⟶ Type]. ∀[zero:A ⟶ 𝔹].
  ∀[z:W(A;a.B[a])]
    ∀[w1:W(A;a.B[a])]. (((w1 z) w1 ∈ W(A;a.B[a])) ∧ ((z w1) w1 ∈ W(A;a.B[a]))) supposing isZero(z) 
  supposing (∀a:A. (↑(zero a) ⇐⇒ ¬B[a])) ∧ (∀a1,a2:A.  ((↑(zero a1))  (↑(zero a2))  (a1 a2 ∈ A)))


Proof




Definitions occuring in Statement :  Wadd: (w1 w2) Wzero: isZero(w) W: W(A;a.B[a]) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] prop: subtype_rel: A ⊆B iff: ⇐⇒ Q all: x:A. B[x] rev_implies:  Q implies:  Q Wsup: Wsup(a;b) Wzero: isZero(w) pi1: fst(t) Wadd: (w1 w2) squash: T true: True guard: {T} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  W_wf Wzero_wf all_wf iff_wf assert_wf not_wf equal_wf bool_wf W-induction Wadd_wf squash_wf true_wf ite_rw_true Wsup_wf iff_weakening_equal eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot Wzero-unique
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin independent_pairFormation hypothesis sqequalRule independent_pairEquality axiomEquality extract_by_obid isectElimination cumulativity hypothesisEquality lambdaEquality applyEquality functionExtensionality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry productEquality functionEquality universeEquality independent_functionElimination lambdaFormation imageElimination independent_isectElimination natural_numberEquality imageMemberEquality baseClosed dependent_functionElimination unionElimination equalityElimination dependent_pairFormation promote_hyp instantiate voidElimination

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[zero:A  {}\mrightarrow{}  \mBbbB{}].
    \mforall{}[z:W(A;a.B[a])].  \mforall{}[w1:W(A;a.B[a])].  (((w1  +  z)  =  w1)  \mwedge{}  ((z  +  w1)  =  w1))  supposing  isZero(z) 
    supposing  (\mforall{}a:A.  (\muparrow{}(zero  a)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}B[a]))  \mwedge{}  (\mforall{}a1,a2:A.    ((\muparrow{}(zero  a1))  {}\mRightarrow{}  (\muparrow{}(zero  a2))  {}\mRightarrow{}  (a1  =  a2)))



Date html generated: 2017_04_14-AM-07_44_48
Last ObjectModification: 2017_02_27-PM-03_15_49

Theory : co-recursion


Home Index