Nuprl Lemma : k-continuous-iff-all-k-1

[k:ℕ]. ∀[F:(ℕk ⟶ Type) ⟶ ℕk ⟶ Type].  (k-Continuous(T.F[T]) ⇐⇒ ∀i:ℕk. k-1-continuous{i:l}(k;T.F[T] i))


Proof




Definitions occuring in Statement :  k-continuous: k-Continuous(T.F[T]) k-1-continuous: k-1-continuous{i:l}(k;T.F[T]) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q all: x:A. B[x] k-continuous: k-Continuous(T.F[T]) k-1-continuous: k-1-continuous{i:l}(k;T.F[T]) nat: prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q subtype_rel: A ⊆B int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q not: ¬A false: False uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) lelt: i ≤ j < k squash: T subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True k-subtype: A ⊆ B guard: {T} k-intersection: n. X[n]
Lemmas referenced :  int_seg_wf k-continuous_wf all_wf k-1-continuous_wf nat_wf k-subtype_wf decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf subtype_rel_self subtype_rel_transitivity k-intersection_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation sqequalHypSubstitution extract_by_obid isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality functionEquality cumulativity universeEquality because_Cache instantiate productElimination independent_pairEquality dependent_functionElimination isect_memberEquality axiomEquality dependent_set_memberEquality addEquality unionElimination voidElimination independent_functionElimination independent_isectElimination imageMemberEquality baseClosed imageElimination voidEquality intEquality minusEquality isectEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[F:(\mBbbN{}k  {}\mrightarrow{}  Type)  {}\mrightarrow{}  \mBbbN{}k  {}\mrightarrow{}  Type].
    (k-Continuous(T.F[T])  \mLeftarrow{}{}\mRightarrow{}  \mforall{}i:\mBbbN{}k.  k-1-continuous\{i:l\}(k;T.F[T]  i))



Date html generated: 2018_05_21-PM-00_09_40
Last ObjectModification: 2017_10_18-PM-02_35_51

Theory : co-recursion


Home Index