Nuprl Lemma : implies-strict-inc

[f:ℕ ⟶ ℕ]. f ∈ StrictInc supposing ∀i:ℕi < (i 1)


Proof




Definitions occuring in Statement :  strict-inc: StrictInc nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a strict-inc: StrictInc all: x:A. B[x] nat: so_lambda: λ2x.t[x] subtype_rel: A ⊆B le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_apply: x[s] ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top guard: {T} int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T sq_type: SQType(T)
Lemmas referenced :  int_formula_prop_eq_lemma intformeq_wf decidable__equal_int int_subtype_base set_subtype_base subtype_base_sq lelt_wf decidable__lt subtract-add-cancel int_term_value_subtract_lemma itermSubtract_wf subtract_wf int_seg_properties less_than_irreflexivity less_than_transitivity1 member-less_than ge_wf int_formula_prop_less_lemma intformless_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties false_wf int_seg_subtype_nat less_than_wf all_wf nat_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality hypothesisEquality lambdaFormation hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache sqequalRule lambdaEquality applyEquality independent_isectElimination independent_pairFormation axiomEquality equalityTransitivity equalitySymmetry addEquality dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll functionEquality intWeakElimination independent_functionElimination productElimination imageElimination instantiate

Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  f  \mmember{}  StrictInc  supposing  \mforall{}i:\mBbbN{}.  f  i  <  f  (i  +  1)



Date html generated: 2016_05_14-PM-09_47_26
Last ObjectModification: 2016_01_15-PM-10_54_56

Theory : continuity


Home Index