Nuprl Lemma : implies-strict-inc
∀[f:ℕ ⟶ ℕ]. f ∈ StrictInc supposing ∀i:ℕ. f i < f (i + 1)
Proof
Definitions occuring in Statement : 
strict-inc: StrictInc, 
nat: ℕ, 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
strict-inc: StrictInc, 
all: ∀x:A. B[x], 
nat: ℕ, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
sq_type: SQType(T)
Lemmas referenced : 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
lelt_wf, 
decidable__lt, 
subtract-add-cancel, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
int_seg_properties, 
less_than_irreflexivity, 
less_than_transitivity1, 
member-less_than, 
ge_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
false_wf, 
int_seg_subtype_nat, 
less_than_wf, 
all_wf, 
nat_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
hypothesisEquality, 
lambdaFormation, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
independent_pairFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
functionEquality, 
intWeakElimination, 
independent_functionElimination, 
productElimination, 
imageElimination, 
instantiate
Latex:
\mforall{}[f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  f  \mmember{}  StrictInc  supposing  \mforall{}i:\mBbbN{}.  f  i  <  f  (i  +  1)
Date html generated:
2016_05_14-PM-09_47_26
Last ObjectModification:
2016_01_15-PM-10_54_56
Theory : continuity
Home
Index