Nuprl Lemma : min-increasing-sequence-prop2
∀b,a:ℕ ⟶ ℕ. ∀n,x,k:ℕ.
  ((b = a ∈ (ℕx ⟶ ℕ))
  ⇒ increasing-sequence(a)
  ⇒ (min-increasing-sequence(b;n;(a x) + 1) = (inl k) ∈ (ℕ?))
  ⇒ (x ≤ k))
Proof
Definitions occuring in Statement : 
min-increasing-sequence: min-increasing-sequence(a;n;k), 
increasing-sequence: increasing-sequence(a), 
int_seg: {i..j-}, 
nat: ℕ, 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
unit: Unit, 
apply: f a, 
function: x:A ⟶ B[x], 
inl: inl x, 
union: left + right, 
add: n + m, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
iff: P ⇐⇒ Q, 
true: True, 
squash: ↓T, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
top: Top, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
guard: {T}, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
and: P ∧ Q, 
le: A ≤ B, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
int_seg_properties, 
increasing-sequence-prop1, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
and_wf, 
lelt_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
min-increasing-sequence-prop1, 
subtype_rel_self, 
int_seg_subtype_nat, 
subtype_rel_dep_function, 
int_seg_wf, 
increasing-sequence_wf, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
add-is-int-iff, 
decidable__le, 
nat_properties, 
le_wf, 
false_wf, 
add_nat_wf, 
min-increasing-sequence_wf, 
unit_wf2, 
nat_wf, 
equal_wf
Rules used in proof : 
universeEquality, 
imageMemberEquality, 
imageElimination, 
functionEquality, 
inlEquality, 
independent_functionElimination, 
computeAll, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
independent_isectElimination, 
productElimination, 
baseClosed, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality, 
unionElimination, 
dependent_functionElimination, 
applyLambdaEquality, 
equalitySymmetry, 
equalityTransitivity, 
independent_pairFormation, 
natural_numberEquality, 
sqequalRule, 
rename, 
setElimination, 
lambdaEquality, 
addEquality, 
dependent_set_memberEquality, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
unionEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}b,a:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n,x,k:\mBbbN{}.
    ((b  =  a)
    {}\mRightarrow{}  increasing-sequence(a)
    {}\mRightarrow{}  (min-increasing-sequence(b;n;(a  x)  +  1)  =  (inl  k))
    {}\mRightarrow{}  (x  \mleq{}  k))
Date html generated:
2017_04_21-AM-11_20_53
Last ObjectModification:
2017_04_20-PM-05_34_59
Theory : continuity
Home
Index