Nuprl Lemma : min-increasing-sequence-prop1

b:ℕ ⟶ ℕ. ∀n,x,k:ℕ.  ((min-increasing-sequence(b;n;x) (inl k) ∈ (ℕ?))  (x ≤ (b k)))


Proof




Definitions occuring in Statement :  min-increasing-sequence: min-increasing-sequence(a;n;k) nat: le: A ≤ B all: x:A. B[x] implies:  Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] isl: isl(x) min-increasing-sequence: min-increasing-sequence(a;n;k) exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than le_witness_for_triv unit_wf2 min-increasing-sequence_wf decidable__le intformnot_wf int_formula_prop_not_lemma istype-le union_subtype_base nat_wf set_subtype_base le_wf int_subtype_base unit_subtype_base subtract-1-ge-0 istype-nat btrue_neq_bfalse bfalse_wf btrue_wf primrec0_lemma primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma le_int_wf assert_of_le_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  productElimination equalityTransitivity equalitySymmetry Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :equalityIstype,  Error :unionIsType,  because_Cache Error :dependent_set_memberEquality_alt,  unionElimination applyEquality intEquality baseApply closedConclusion baseClosed sqequalBase Error :functionIsType,  applyLambdaEquality Error :equalityIsType4,  Error :productIsType,  equalityElimination promote_hyp instantiate cumulativity

Latex:
\mforall{}b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n,x,k:\mBbbN{}.    ((min-increasing-sequence(b;n;x)  =  (inl  k))  {}\mRightarrow{}  (x  \mleq{}  (b  k)))



Date html generated: 2019_06_20-PM-03_07_13
Last ObjectModification: 2018_12_06-PM-11_57_09

Theory : continuity


Home Index