Nuprl Lemma : min-increasing-sequence-prop1
∀b:ℕ ⟶ ℕ. ∀n,x,k:ℕ.  ((min-increasing-sequence(b;n;x) = (inl k) ∈ (ℕ?)) ⇒ (x ≤ (b k)))
Proof
Definitions occuring in Statement : 
min-increasing-sequence: min-increasing-sequence(a;n;k), 
nat: ℕ, 
le: A ≤ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
unit: Unit, 
apply: f a, 
function: x:A ⟶ B[x], 
inl: inl x, 
union: left + right, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
le: A ≤ B, 
decidable: Dec(P), 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
isl: isl(x), 
min-increasing-sequence: min-increasing-sequence(a;n;k), 
exposed-bfalse: exposed-bfalse, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
le_witness_for_triv, 
unit_wf2, 
min-increasing-sequence_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-le, 
union_subtype_base, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
unit_subtype_base, 
subtract-1-ge-0, 
istype-nat, 
btrue_neq_bfalse, 
bfalse_wf, 
btrue_wf, 
primrec0_lemma, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
le_int_wf, 
assert_of_le_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
Error :universeIsType, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsTypeImplies, 
Error :inhabitedIsType, 
Error :equalityIstype, 
Error :unionIsType, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
applyEquality, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
sqequalBase, 
Error :functionIsType, 
applyLambdaEquality, 
Error :equalityIsType4, 
Error :productIsType, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}b:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}n,x,k:\mBbbN{}.    ((min-increasing-sequence(b;n;x)  =  (inl  k))  {}\mRightarrow{}  (x  \mleq{}  (b  k)))
Date html generated:
2019_06_20-PM-03_07_13
Last ObjectModification:
2018_12_06-PM-11_57_09
Theory : continuity
Home
Index