Nuprl Lemma : strong-continuity2-implies-uniform-continuity-nat-ext
∀F:(ℕ ⟶ 𝔹) ⟶ ℕ. ⇃(∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f = g ∈ (ℕn ⟶ 𝔹)) ⇒ ((F f) = (F g) ∈ ℕ)))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y], 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
true: True, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
compose: f o g, 
ifthenelse: if b then t else f fi , 
pi1: fst(t), 
strong-continuity-test: strong-continuity-test(M;n;f;b), 
isl: isl(x), 
is_int: is_int(x), 
mu: mu(f), 
mu-ge: mu-ge(f;n), 
subtract: n - m, 
let: let, 
strong-continuity2-implies-uniform-continuity-nat, 
uniform-continuity-from-fan-ext, 
strong-continuity2-no-inner-squash-cantor2, 
strong-continuity2-half-squash-surject-biject, 
surject-nat-bool, 
trivial-biject-exists, 
implies-quotient-true2, 
trivial-quotient-true, 
strong-continuity2_biject_retract-ext, 
id-biject, 
strong-continuity2_functionality_surject, 
bool_cases_sqequal, 
any: any x, 
strong-continuity2-half-squash, 
implies-quotient-true, 
strong-continuity2-iff-3, 
strong-continuity3_functionality_surject, 
basic-implies-strong-continuity2-ext, 
strong-continuity2-implies-3, 
surject-inverse, 
decidable__assert, 
strong-continuity-test-prop1, 
strong-continuity-test-prop2, 
not-isl-assert-isr, 
bool_cases, 
eqtt_to_assert, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
has-value: (a)↓, 
btrue: tt, 
bfalse: ff
Lemmas referenced : 
strong-continuity2-implies-uniform-continuity-nat, 
lifting-strict-decide, 
istype-void, 
strict4-spread, 
strict4-decide, 
has-value_wf_base, 
is-exception_wf, 
lifting-strict-callbyvalue, 
lifting-strict-isint, 
uniform-continuity-from-fan-ext, 
strong-continuity2-no-inner-squash-cantor2, 
strong-continuity2-half-squash-surject-biject, 
surject-nat-bool, 
trivial-biject-exists, 
implies-quotient-true2, 
trivial-quotient-true, 
strong-continuity2_biject_retract-ext, 
id-biject, 
strong-continuity2_functionality_surject, 
bool_cases_sqequal, 
strong-continuity2-half-squash, 
implies-quotient-true, 
strong-continuity2-iff-3, 
strong-continuity3_functionality_surject, 
basic-implies-strong-continuity2-ext, 
strong-continuity2-implies-3, 
surject-inverse, 
decidable__assert, 
strong-continuity-test-prop1, 
strong-continuity-test-prop2, 
not-isl-assert-isr, 
bool_cases, 
eqtt_to_assert
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
sqequalSqle, 
divergentSqle, 
callbyvalueDecide, 
hypothesisEquality, 
unionElimination, 
sqleReflexivity, 
Error :equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
decideExceptionCases, 
axiomSqleEquality, 
exceptionSqequal, 
baseApply, 
closedConclusion
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbN{}.  \00D9(\mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g))))
Date html generated:
2019_06_20-PM-02_52_52
Last ObjectModification:
2019_03_12-PM-09_29_30
Theory : continuity
Home
Index