Nuprl Lemma : weak-continuity-principle-nat-nat

F:(ℕ ⟶ ℕ) ⟶ ℕ. ∀f:ℕ ⟶ ℕ. ∀G:n:ℕ ⟶ {g:ℕ ⟶ ℕg ∈ (ℕn ⟶ ℕ)} .  ∃n:ℕ((F f) (F (G n)) ∈ ℕ)


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) guard: {T} exists: x:A. B[x] squash: T implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B uimplies: supposing a so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: uall: [x:A]. B[x] prop: member: t ∈ T all: x:A. B[x]
Lemmas referenced :  le_wf int_term_value_constant_lemma int_formula_prop_le_lemma itermConstant_wf intformle_wf decidable__le mu-property assert_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat decidable__equal_int nat_properties assert_of_eq_int eq_int_wf mu_wf and_wf set_wf all_wf exists_wf squash-from-quotient subtype_rel_self false_wf int_seg_subtype_nat subtype_rel_dep_function int_seg_wf equal_wf nat_wf weak-continuity-nat-nat
Rules used in proof :  voidEquality voidElimination isect_memberEquality intEquality int_eqEquality approximateComputation unionElimination applyLambdaEquality equalityTransitivity dependent_set_memberEquality equalitySymmetry levelHypothesis addLevel baseClosed imageMemberEquality dependent_pairFormation productElimination imageElimination independent_functionElimination functionExtensionality independent_pairFormation independent_isectElimination lambdaEquality sqequalRule applyEquality rename setElimination natural_numberEquality isectElimination because_Cache setEquality functionEquality hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbN{})  {}\mrightarrow{}  \mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}.  \mforall{}G:n:\mBbbN{}  {}\mrightarrow{}  \{g:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}|  f  =  g\}  .    \mexists{}n:\mBbbN{}.  ((F  f)  =  (F  (G  n)))



Date html generated: 2017_09_29-PM-06_06_05
Last ObjectModification: 2017_08_30-PM-00_04_43

Theory : continuity


Home Index