Nuprl Lemma : apply-alist-no_repeats
∀[A,T:Type]. ∀[eq:EqDecider(T)]. ∀[L:(T × A) List].
  ∀[x:T]. ∀[a:A].  apply-alist(eq;L;x) = (inl a) ∈ (A?) supposing (<x, a> ∈ L) 
  supposing no_repeats(T;map(λp.(fst(p));L))
Proof
Definitions occuring in Statement : 
apply-alist: apply-alist(eq;L;x)
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
map: map(f;as)
, 
list: T List
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
unit: Unit
, 
lambda: λx.A[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
inl: inl x
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
nat: ℕ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
less_than: a < b
, 
squash: ↓T
, 
pi1: fst(t)
, 
no_repeats: no_repeats(T;l)
, 
less_than': less_than'(a;b)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
pi2: snd(t)
Lemmas referenced : 
apply-alist-cases, 
subtype_rel_list, 
top_wf, 
subtype_rel_product, 
lelt_wf, 
length_wf, 
equal_wf, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
pi1_wf, 
int_seg_wf, 
and_wf, 
l_member_wf, 
no_repeats_wf, 
map_wf, 
list_wf, 
deq_wf, 
int_seg_subtype_nat, 
false_wf, 
map-length, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
nat_wf, 
not_wf, 
squash_wf, 
true_wf, 
map_select, 
iff_weakening_equal, 
pi2_wf, 
unit_wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
productEquality, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
independent_pairFormation, 
independent_functionElimination, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
imageElimination, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
axiomEquality, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
inlEquality
Latex:
\mforall{}[A,T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:(T  \mtimes{}  A)  List].
    \mforall{}[x:T].  \mforall{}[a:A].    apply-alist(eq;L;x)  =  (inl  a)  supposing  (<x,  a>  \mmember{}  L) 
    supposing  no\_repeats(T;map(\mlambda{}p.(fst(p));L))
Date html generated:
2017_09_29-PM-06_04_26
Last ObjectModification:
2017_07_26-PM-02_53_04
Theory : decidable!equality
Home
Index