Nuprl Lemma : list-to-set_functionality_wrt_permutation
∀[T:Type]
  ∀eq:EqDecider(T). ∀L1,L2:T List.  (permutation(T;L1;L2) ⇒ permutation(T;list-to-set(eq;L1);list-to-set(eq;L2)))
Proof
Definitions occuring in Statement : 
list-to-set: list-to-set(eq;L), 
permutation: permutation(T;L1;L2), 
list: T List, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
top: Top, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
le: A ≤ B, 
ge: i ≥ j , 
nat: ℕ, 
false: False, 
not: ¬A, 
or: P ∨ Q, 
decidable: Dec(P), 
istype: istype(T), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
prop: ℙ, 
rev_uimplies: rev_uimplies(P;Q), 
rev_implies: P ⇐ Q, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
eqof: eqof(d), 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
deq: EqDecider(T), 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
intformle_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__equal_int, 
non_neg_length, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
length_wf_nat, 
istype-int, 
l_member-iff-length-filter, 
l_member_wf, 
bool_wf, 
subtype_rel_dep_function, 
filter_wf5, 
length_wf, 
decidable__le, 
member-permutation, 
istype-universe, 
deq_wf, 
list_wf, 
permutation_wf, 
no-repeats-iff-count, 
list-to-set-property, 
list-to-set_wf, 
assert_witness, 
istype-assert, 
safe-assert-deq, 
permutation-iff-count1
Rules used in proof : 
Error :isect_memberEquality_alt, 
int_eqEquality, 
Error :dependent_pairFormation_alt, 
approximateComputation, 
sqequalBase, 
baseClosed, 
intEquality, 
voidElimination, 
equalitySymmetry, 
equalityTransitivity, 
unionElimination, 
Error :setIsType, 
setEquality, 
natural_numberEquality, 
universeEquality, 
instantiate, 
Error :universeIsType, 
Error :functionIsTypeImplies, 
axiomEquality, 
Error :lambdaEquality_alt, 
independent_pairEquality, 
Error :inhabitedIsType, 
Error :equalityIstype, 
applyEquality, 
independent_isectElimination, 
productElimination, 
because_Cache, 
sqequalRule, 
independent_pairFormation, 
independent_functionElimination, 
hypothesis, 
rename, 
setElimination, 
dependent_functionElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}L1,L2:T  List.
        (permutation(T;L1;L2)  {}\mRightarrow{}  permutation(T;list-to-set(eq;L1);list-to-set(eq;L2)))
Date html generated:
2019_06_20-PM-01_55_53
Last ObjectModification:
2019_06_19-AM-11_01_58
Theory : decidable!equality
Home
Index