Nuprl Lemma : list-to-set_functionality_wrt_permutation

[T:Type]
  ∀eq:EqDecider(T). ∀L1,L2:T List.  (permutation(T;L1;L2)  permutation(T;list-to-set(eq;L1);list-to-set(eq;L2)))


Proof




Definitions occuring in Statement :  list-to-set: list-to-set(eq;L) permutation: permutation(T;L1;L2) list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) le: A ≤ B ge: i ≥  nat: false: False not: ¬A or: P ∨ Q decidable: Dec(P) istype: istype(T) so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B guard: {T} prop: rev_uimplies: rev_uimplies(P;Q) rev_implies:  Q uimplies: supposing a uiff: uiff(P;Q) eqof: eqof(d) and: P ∧ Q iff: ⇐⇒ Q deq: EqDecider(T) member: t ∈ T implies:  Q all: x:A. B[x] uall: [x:A]. B[x]
Lemmas referenced :  int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma itermConstant_wf intformle_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf full-omega-unsat decidable__equal_int non_neg_length int_subtype_base le_wf set_subtype_base length_wf_nat istype-int l_member-iff-length-filter l_member_wf bool_wf subtype_rel_dep_function filter_wf5 length_wf decidable__le member-permutation istype-universe deq_wf list_wf permutation_wf no-repeats-iff-count list-to-set-property list-to-set_wf assert_witness istype-assert safe-assert-deq permutation-iff-count1
Rules used in proof :  Error :isect_memberEquality_alt,  int_eqEquality Error :dependent_pairFormation_alt,  approximateComputation sqequalBase baseClosed intEquality voidElimination equalitySymmetry equalityTransitivity unionElimination Error :setIsType,  setEquality natural_numberEquality universeEquality instantiate Error :universeIsType,  Error :functionIsTypeImplies,  axiomEquality Error :lambdaEquality_alt,  independent_pairEquality Error :inhabitedIsType,  Error :equalityIstype,  applyEquality independent_isectElimination productElimination because_Cache sqequalRule independent_pairFormation independent_functionElimination hypothesis rename setElimination dependent_functionElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}L1,L2:T  List.
        (permutation(T;L1;L2)  {}\mRightarrow{}  permutation(T;list-to-set(eq;L1);list-to-set(eq;L2)))



Date html generated: 2019_06_20-PM-01_55_53
Last ObjectModification: 2019_06_19-AM-11_01_58

Theory : decidable!equality


Home Index