Nuprl Lemma : remove-repeats-mapfilter-with-fun
∀[T,U:Type]. ∀[eq:EqDecider(U)]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[L:T List]. ∀[P:T ⟶ 𝔹]. ∀[f:{x:T| ↑(P x)}  ⟶ U].
  (remove-repeats(eq;mapfilter(f;P;L))
     = mapfilter(f;λa.((P a) ∧b (¬b(∃x∈L.(P x) ∧b R[x;a] ∧b (eq (f x) (f a)))_b));L)
     ∈ (U List)) supposing 
     (sorted-by(λx,y. (↑R[x;y]);L) and 
     StAntiSym(T;x,y.↑R[x;y]) and 
     Irrefl(T;x,y.↑R[x;y]))
Proof
Definitions occuring in Statement : 
remove-repeats: remove-repeats(eq;L)
, 
bl-exists: (∃x∈L.P[x])_b
, 
sorted-by: sorted-by(R;L)
, 
mapfilter: mapfilter(f;P;L)
, 
list: T List
, 
deq: EqDecider(T)
, 
irrefl: Irrefl(T;x,y.E[x; y])
, 
st_anti_sym: StAntiSym(T;x,y.R[x; y])
, 
band: p ∧b q
, 
bnot: ¬bb
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
mapfilter: mapfilter(f;P;L)
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
so_apply: x[s1;s2]
, 
deq: EqDecider(T)
, 
bfalse: ff
, 
or: P ∨ Q
, 
assert: ↑b
, 
true: True
, 
false: False
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x y.t[x; y]
, 
irrefl: Irrefl(T;x,y.E[x; y])
, 
st_anti_sym: StAntiSym(T;x,y.R[x; y])
, 
top: Top
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
list_wf, 
remove-repeats-fun-map2, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
map_wf, 
assert_wf, 
eqtt_to_assert, 
bnot_wf, 
bl-exists_wf, 
subtype_rel_sets, 
bool_cases_sqequal, 
filter_type, 
iff_weakening_equal, 
sorted-by_wf, 
st_anti_sym_wf, 
irrefl_wf, 
deq_wf, 
member_filter_2, 
remove-repeats-fun-as-filter, 
sorted-by-filter, 
filter-filter, 
bl-exists-filter, 
mapfilter_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
cumulativity, 
sqequalRule, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
functionExtensionality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
isect_memberEquality, 
axiomEquality, 
functionEquality, 
voidEquality
Latex:
\mforall{}[T,U:Type].  \mforall{}[eq:EqDecider(U)].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
\mforall{}[f:\{x:T|  \muparrow{}(P  x)\}    {}\mrightarrow{}  U].
    (remove-repeats(eq;mapfilter(f;P;L))
          =  mapfilter(f;\mlambda{}a.((P  a)  \mwedge{}\msubb{}  (\mneg{}\msubb{}(\mexists{}x\mmember{}L.(P  x)  \mwedge{}\msubb{}  R[x;a]  \mwedge{}\msubb{}  (eq  (f  x)  (f  a)))\_b));L))  supposing 
          (sorted-by(\mlambda{}x,y.  (\muparrow{}R[x;y]);L)  and 
          StAntiSym(T;x,y.\muparrow{}R[x;y])  and 
          Irrefl(T;x,y.\muparrow{}R[x;y]))
Date html generated:
2017_04_17-AM-09_12_38
Last ObjectModification:
2017_02_27-PM-05_20_00
Theory : decidable!equality
Home
Index