Nuprl Lemma : sq-decider-list-deq

[eq:Base]. sq-decider(list-deq(eq)) supposing sq-decider(eq)


Proof




Definitions occuring in Statement :  list-deq: list-deq(eq) sq-decider: sq-decider(eq) uimplies: supposing a uall: [x:A]. B[x] base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq-decider: sq-decider(eq) implies:  Q exists: x:A. B[x] list-deq: list-deq(eq) list_ind: list_ind nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + has-value: (a)↓ band: p ∧b q bfalse: ff ifthenelse: if then else fi  outl: outl(x) cand: c∧ B sq_type: SQType(T) guard: {T} true: True null: null(as) btrue: tt
Lemmas referenced :  value-type-has-value base_wf union-value-type nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf has-value_wf_base int_subtype_base fun_exp0_lemma strictness-apply bottom_diverge decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma exists_wf sqequal-wf-base sq-decider_wf fun_exp_unroll_1 has-value-implies-dec-ispair-2 top_wf equal_wf subtype_base_sq has-value-implies-dec-isaxiom-2 subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule hypothesis extract_by_obid isectElimination unionEquality voidEquality independent_isectElimination inlEquality hypothesisEquality compactness setElimination rename intWeakElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry sqequalIntensionalEquality baseApply closedConclusion baseClosed because_Cache applyEquality unionElimination sqequalAxiom dependent_set_memberEquality callbyvalueApply callbyvalueCallbyvalue callbyvalueReduce callbyvalueDecide instantiate cumulativity promote_hyp addLevel levelHypothesis callbyvalueIspair

Latex:
\mforall{}[eq:Base].  sq-decider(list-deq(eq))  supposing  sq-decider(eq)



Date html generated: 2017_09_29-PM-06_04_19
Last ObjectModification: 2017_07_26-PM-02_53_03

Theory : decidable!equality


Home Index