Nuprl Lemma : sq-decider-list-deq
∀[eq:Base]. sq-decider(list-deq(eq)) supposing sq-decider(eq)
Proof
Definitions occuring in Statement : 
list-deq: list-deq(eq)
, 
sq-decider: sq-decider(eq)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
base: Base
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq-decider: sq-decider(eq)
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
list-deq: list-deq(eq)
, 
list_ind: list_ind, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
has-value: (a)↓
, 
band: p ∧b q
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
outl: outl(x)
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
guard: {T}
, 
true: True
, 
null: null(as)
, 
btrue: tt
Lemmas referenced : 
value-type-has-value, 
base_wf, 
union-value-type, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
has-value_wf_base, 
int_subtype_base, 
fun_exp0_lemma, 
strictness-apply, 
bottom_diverge, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
exists_wf, 
sqequal-wf-base, 
sq-decider_wf, 
fun_exp_unroll_1, 
has-value-implies-dec-ispair-2, 
top_wf, 
equal_wf, 
subtype_base_sq, 
has-value-implies-dec-isaxiom-2, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
isectElimination, 
unionEquality, 
voidEquality, 
independent_isectElimination, 
inlEquality, 
hypothesisEquality, 
compactness, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
sqequalIntensionalEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
because_Cache, 
applyEquality, 
unionElimination, 
sqequalAxiom, 
dependent_set_memberEquality, 
callbyvalueApply, 
callbyvalueCallbyvalue, 
callbyvalueReduce, 
callbyvalueDecide, 
instantiate, 
cumulativity, 
promote_hyp, 
addLevel, 
levelHypothesis, 
callbyvalueIspair
Latex:
\mforall{}[eq:Base].  sq-decider(list-deq(eq))  supposing  sq-decider(eq)
Date html generated:
2017_09_29-PM-06_04_19
Last ObjectModification:
2017_07_26-PM-02_53_03
Theory : decidable!equality
Home
Index