Nuprl Lemma : weak-update-alist_wf

[A,T:Type]. ∀[eq:T ⟶ T ⟶ 𝔹]. ∀[x:T]. ∀[L:(T × A) List]. ∀[z:A]. ∀[f:A ⟶ A].
  (weak-update-alist(eq;L;x;z;v.f[v]) ∈ (T × A) List)


Proof




Definitions occuring in Statement :  weak-update-alist: weak-update-alist(eq;L;x;z;v.f[v]) list: List bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T weak-update-alist: weak-update-alist(eq;L;x;z;v.f[v]) update-alist: update-alist(eq;L;x;z;v.f[v]) all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases list_ind_nil_lemma cons_wf nil_wf product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_ind_cons_lemma ifthenelse_wf list_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut thin lambdaFormation introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry productEquality cumulativity applyEquality because_Cache unionElimination independent_pairEquality promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionExtensionality functionEquality universeEquality

Latex:
\mforall{}[A,T:Type].  \mforall{}[eq:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x:T].  \mforall{}[L:(T  \mtimes{}  A)  List].  \mforall{}[z:A].  \mforall{}[f:A  {}\mrightarrow{}  A].
    (weak-update-alist(eq;L;x;z;v.f[v])  \mmember{}  (T  \mtimes{}  A)  List)



Date html generated: 2017_04_17-AM-09_08_52
Last ObjectModification: 2017_02_27-PM-05_17_11

Theory : decidable!equality


Home Index