Nuprl Lemma : filter-fset-minimals

[T:Type]. ∀[eq:EqDecider(T)]. ∀[less:T ⟶ T ⟶ 𝔹]. ∀[s:fset(T)]. ∀[P:T ⟶ 𝔹].
  {a ∈ fset-minimals(x,y.less[x;y]; s) P[a]} fset-minimals(x,y.less[x;y]; {a ∈ P[a]}) ∈ fset(T) 
  supposing ∀a,y:T.  ((↑P[a])  (↑less[y;a])  (↑P[y]))


Proof




Definitions occuring in Statement :  fset-minimals: fset-minimals(x,y.less[x; y]; s) fset-filter: {x ∈ P[x]} fset: fset(T) deq: EqDecider(T) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a implies:  Q prop: guard: {T} iff: ⇐⇒ Q cand: c∧ B rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) all: x:A. B[x] false: False btrue: tt ifthenelse: if then else fi  bnot: ¬bb not: ¬A
Lemmas referenced :  fset-extensionality fset-filter_wf istype-universe fset-minimals_wf member-fset-filter fset-member_witness fset-member_wf fset-all_wf bnot_wf assert_wf iff_weakening_uiff member-fset-minimals fset-all-iff uall_wf isect_wf assert_witness bool_wf fset_wf deq_wf iff_transitivity assert_of_bnot assert_elim bfalse_wf and_wf equal_wf btrue_neq_bfalse
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  applyEquality hypothesis because_Cache Error :inhabitedIsType,  productElimination independent_isectElimination Error :isect_memberFormation_alt,  independent_pairFormation independent_functionElimination Error :universeIsType,  independent_pairEquality Error :isect_memberEquality_alt,  equalityTransitivity equalitySymmetry productEquality Error :productIsType,  promote_hyp Error :functionIsType,  universeEquality axiomEquality Error :lambdaFormation_alt,  voidElimination setEquality rename setElimination dependent_set_memberEquality levelHypothesis addLevel lambdaFormation isect_memberFormation lambdaEquality lemma_by_obid dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[less:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
    \{a  \mmember{}  fset-minimals(x,y.less[x;y];  s)  |  P[a]\}  =  fset-minimals(x,y.less[x;y];  \{a  \mmember{}  s  |  P[a]\}) 
    supposing  \mforall{}a,y:T.    ((\muparrow{}P[a])  {}\mRightarrow{}  (\muparrow{}less[y;a])  {}\mRightarrow{}  (\muparrow{}P[y]))



Date html generated: 2019_06_20-PM-02_00_20
Last ObjectModification: 2018_10_06-PM-11_55_40

Theory : finite!sets


Home Index