Nuprl Lemma : filter-fset-minimals
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[less:T ⟶ T ⟶ 𝔹]. ∀[s:fset(T)]. ∀[P:T ⟶ 𝔹].
  {a ∈ fset-minimals(x,y.less[x;y]; s) | P[a]} = fset-minimals(x,y.less[x;y]; {a ∈ s | P[a]}) ∈ fset(T) 
  supposing ∀a,y:T.  ((↑P[a]) 
⇒ (↑less[y;a]) 
⇒ (↑P[y]))
Proof
Definitions occuring in Statement : 
fset-minimals: fset-minimals(x,y.less[x; y]; s)
, 
fset-filter: {x ∈ s | P[x]}
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
all: ∀x:A. B[x]
, 
false: False
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
not: ¬A
Lemmas referenced : 
fset-extensionality, 
fset-filter_wf, 
istype-universe, 
fset-minimals_wf, 
member-fset-filter, 
fset-member_witness, 
fset-member_wf, 
fset-all_wf, 
bnot_wf, 
assert_wf, 
iff_weakening_uiff, 
member-fset-minimals, 
fset-all-iff, 
uall_wf, 
isect_wf, 
assert_witness, 
bool_wf, 
fset_wf, 
deq_wf, 
iff_transitivity, 
assert_of_bnot, 
assert_elim, 
bfalse_wf, 
and_wf, 
equal_wf, 
btrue_neq_bfalse
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
applyEquality, 
hypothesis, 
because_Cache, 
Error :inhabitedIsType, 
productElimination, 
independent_isectElimination, 
Error :isect_memberFormation_alt, 
independent_pairFormation, 
independent_functionElimination, 
Error :universeIsType, 
independent_pairEquality, 
Error :isect_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
productEquality, 
Error :productIsType, 
promote_hyp, 
Error :functionIsType, 
universeEquality, 
axiomEquality, 
Error :lambdaFormation_alt, 
voidElimination, 
setEquality, 
rename, 
setElimination, 
dependent_set_memberEquality, 
levelHypothesis, 
addLevel, 
lambdaFormation, 
isect_memberFormation, 
lambdaEquality, 
lemma_by_obid, 
dependent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[less:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
    \{a  \mmember{}  fset-minimals(x,y.less[x;y];  s)  |  P[a]\}  =  fset-minimals(x,y.less[x;y];  \{a  \mmember{}  s  |  P[a]\}) 
    supposing  \mforall{}a,y:T.    ((\muparrow{}P[a])  {}\mRightarrow{}  (\muparrow{}less[y;a])  {}\mRightarrow{}  (\muparrow{}P[y]))
Date html generated:
2019_06_20-PM-02_00_20
Last ObjectModification:
2018_10_06-PM-11_55_40
Theory : finite!sets
Home
Index