Nuprl Lemma : div_is_zero
∀[n:{2...}]. ∀[i:ℤ]. i ÷ n ~ 0 supposing |i| < n
Proof
Definitions occuring in Statement :
absval: |i|
,
int_upper: {i...}
,
less_than: a < b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
divide: n ÷ m
,
natural_number: $n
,
int: ℤ
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
guard: {T}
,
subtype_rel: A ⊆r B
,
nat: ℕ
,
int_upper: {i...}
,
int_nzero: ℤ-o
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
nequal: a ≠ b ∈ T
,
not: ¬A
,
false: False
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
decidable: Dec(P)
,
or: P ∨ Q
,
nat_plus: ℕ+
,
squash: ↓T
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
int_lower: {...i}
,
gt: i > j
,
ge: i ≥ j
,
cand: A c∧ B
,
less_than: a < b
,
uiff: uiff(P;Q)
Lemmas referenced :
subtype_base_sq,
int_subtype_base,
istype-less_than,
absval_wf,
istype-int,
istype-int_upper,
div_rem_sum,
subtype_rel_sets_simple,
le_wf,
nequal_wf,
full-omega-unsat,
intformand_wf,
intformeq_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf,
istype-le,
decidable__le,
rem_bounds_1,
int_upper_properties,
decidable__lt,
intformnot_wf,
intformless_wf,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
nat_wf,
set_subtype_base,
absval-non-neg,
absval_pos,
equal_wf,
squash_wf,
true_wf,
istype-universe,
quotient-is-zero,
upper_subtype_nat,
istype-false,
subtype_rel_self,
iff_weakening_equal,
rem_bounds_2,
absval_neg,
itermMinus_wf,
int_term_value_minus_lemma,
mul_preserves_le,
itermMultiply_wf,
itermAdd_wf,
int_term_value_mul_lemma,
int_term_value_add_lemma,
decidable__equal_int,
add-is-int-iff,
multiply-is-int-iff,
false_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
thin,
instantiate,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
cumulativity,
intEquality,
independent_isectElimination,
hypothesis,
dependent_functionElimination,
equalityTransitivity,
equalitySymmetry,
independent_functionElimination,
axiomSqEquality,
hypothesisEquality,
applyEquality,
Error :lambdaEquality_alt,
setElimination,
rename,
Error :inhabitedIsType,
sqequalRule,
Error :isect_memberEquality_alt,
Error :isectIsTypeImplies,
natural_numberEquality,
Error :lambdaFormation_alt,
approximateComputation,
Error :dependent_pairFormation_alt,
int_eqEquality,
voidElimination,
independent_pairFormation,
Error :universeIsType,
Error :equalityIstype,
baseClosed,
sqequalBase,
because_Cache,
unionElimination,
Error :dependent_set_memberEquality_alt,
productElimination,
imageElimination,
universeEquality,
imageMemberEquality,
minusEquality,
divideEquality,
pointwiseFunctionality,
promote_hyp,
baseApply,
closedConclusion
Latex:
\mforall{}[n:\{2...\}]. \mforall{}[i:\mBbbZ{}]. i \mdiv{} n \msim{} 0 supposing |i| < n
Date html generated:
2019_06_20-PM-01_18_50
Last ObjectModification:
2019_02_12-PM-00_26_19
Theory : int_2
Home
Index