Nuprl Lemma : div_is_zero

[n:{2...}]. ∀[i:ℤ].  i ÷ supposing |i| < n


Proof




Definitions occuring in Statement :  absval: |i| int_upper: {i...} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] divide: n ÷ m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} subtype_rel: A ⊆B nat: int_upper: {i...} int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q nat_plus: + squash: T le: A ≤ B less_than': less_than'(a;b) true: True iff: ⇐⇒ Q rev_implies:  Q int_lower: {...i} gt: i > j ge: i ≥  cand: c∧ B less_than: a < b uiff: uiff(P;Q)
Lemmas referenced :  subtype_base_sq int_subtype_base istype-less_than absval_wf istype-int istype-int_upper div_rem_sum subtype_rel_sets_simple le_wf nequal_wf full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf istype-le decidable__le rem_bounds_1 int_upper_properties decidable__lt intformnot_wf intformless_wf int_formula_prop_not_lemma int_formula_prop_less_lemma nat_wf set_subtype_base absval-non-neg absval_pos equal_wf squash_wf true_wf istype-universe quotient-is-zero upper_subtype_nat istype-false subtype_rel_self iff_weakening_equal rem_bounds_2 absval_neg itermMinus_wf int_term_value_minus_lemma mul_preserves_le itermMultiply_wf itermAdd_wf int_term_value_mul_lemma int_term_value_add_lemma decidable__equal_int add-is-int-iff multiply-is-int-iff false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination axiomSqEquality hypothesisEquality applyEquality Error :lambdaEquality_alt,  setElimination rename Error :inhabitedIsType,  sqequalRule Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  natural_numberEquality Error :lambdaFormation_alt,  approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality voidElimination independent_pairFormation Error :universeIsType,  Error :equalityIstype,  baseClosed sqequalBase because_Cache unionElimination Error :dependent_set_memberEquality_alt,  productElimination imageElimination universeEquality imageMemberEquality minusEquality divideEquality pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}[n:\{2...\}].  \mforall{}[i:\mBbbZ{}].    i  \mdiv{}  n  \msim{}  0  supposing  |i|  <  n



Date html generated: 2019_06_20-PM-01_18_50
Last ObjectModification: 2019_02_12-PM-00_26_19

Theory : int_2


Home Index