Nuprl Lemma : div_is_zero
∀[n:{2...}]. ∀[i:ℤ].  i ÷ n ~ 0 supposing |i| < n
Proof
Definitions occuring in Statement : 
absval: |i|
, 
int_upper: {i...}
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
int_upper: {i...}
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
int_lower: {...i}
, 
gt: i > j
, 
ge: i ≥ j 
, 
cand: A c∧ B
, 
less_than: a < b
, 
uiff: uiff(P;Q)
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
istype-less_than, 
absval_wf, 
istype-int, 
istype-int_upper, 
div_rem_sum, 
subtype_rel_sets_simple, 
le_wf, 
nequal_wf, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
istype-le, 
decidable__le, 
rem_bounds_1, 
int_upper_properties, 
decidable__lt, 
intformnot_wf, 
intformless_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
nat_wf, 
set_subtype_base, 
absval-non-neg, 
absval_pos, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
quotient-is-zero, 
upper_subtype_nat, 
istype-false, 
subtype_rel_self, 
iff_weakening_equal, 
rem_bounds_2, 
absval_neg, 
itermMinus_wf, 
int_term_value_minus_lemma, 
mul_preserves_le, 
itermMultiply_wf, 
itermAdd_wf, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
decidable__equal_int, 
add-is-int-iff, 
multiply-is-int-iff, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomSqEquality, 
hypothesisEquality, 
applyEquality, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
Error :inhabitedIsType, 
sqequalRule, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
natural_numberEquality, 
Error :lambdaFormation_alt, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
Error :equalityIstype, 
baseClosed, 
sqequalBase, 
because_Cache, 
unionElimination, 
Error :dependent_set_memberEquality_alt, 
productElimination, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
minusEquality, 
divideEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion
Latex:
\mforall{}[n:\{2...\}].  \mforall{}[i:\mBbbZ{}].    i  \mdiv{}  n  \msim{}  0  supposing  |i|  <  n
Date html generated:
2019_06_20-PM-01_18_50
Last ObjectModification:
2019_02_12-PM-00_26_19
Theory : int_2
Home
Index