Nuprl Lemma : sum_constant

[n:ℕ]. ∀[a:ℤ].  (a x < n) (a n) ∈ ℤ)


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) nat: uall: [x:A]. B[x] multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] nat: so_apply: x[s] all: x:A. B[x] implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: btrue: tt subtype_rel: A ⊆B uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  sum-as-primrec int_seg_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf primrec0_lemma decidable__equal_int intformnot_wf intformeq_wf itermMultiply_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma decidable__le subtract_wf itermSubtract_wf int_term_value_subtract_lemma primrec-unroll eq_int_wf bool_wf uiff_transitivity equal-wf-base int_subtype_base assert_wf eqtt_to_assert assert_of_eq_int iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot itermAdd_wf int_term_value_add_lemma equal_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality natural_numberEquality setElimination rename hypothesis lambdaFormation intWeakElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality because_Cache unionElimination equalityElimination baseApply closedConclusion baseClosed applyEquality productElimination impliesFunctionality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbZ{}].    (\mSigma{}(a  |  x  <  n)  =  (a  *  n))



Date html generated: 2017_04_14-AM-09_20_09
Last ObjectModification: 2017_02_27-PM-03_56_03

Theory : int_2


Home Index