Nuprl Lemma : l_all_reduce
∀[T:Type]. ∀[L:T List]. ∀[P:T ⟶ 𝔹].  uiff((∀x∈L.↑P[x]);↑reduce(λx,y. (P[x] ∧b y);tt;L))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x]), 
reduce: reduce(f;k;as), 
list: T List, 
band: p ∧b q, 
assert: ↑b, 
btrue: tt, 
bool: 𝔹, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
top: Top, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
sq_stable: SqStable(P), 
lelt: i ≤ j < k, 
squash: ↓T, 
guard: {T}, 
false: False, 
true: True, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
it: ⋅, 
nil: [], 
select: L[n], 
rev_uimplies: rev_uimplies(P;Q), 
cand: A c∧ B, 
or: P ∨ Q, 
band: p ∧b q, 
bfalse: ff, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
list_induction, 
uall_wf, 
bool_wf, 
uiff_wf, 
l_all_wf, 
assert_wf, 
l_member_wf, 
reduce_wf, 
band_wf, 
btrue_wf, 
list_wf, 
reduce_nil_lemma, 
reduce_cons_lemma, 
assert_witness, 
select_wf, 
sq_stable__le, 
int_seg_wf, 
length_wf, 
true_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
all_wf, 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
assert_of_band, 
bool_cases_sqequal, 
l_all_cons, 
cons_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
hypothesis, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
because_Cache, 
productElimination, 
independent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
cumulativity, 
independent_isectElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
universeEquality, 
axiomEquality, 
independent_pairFormation, 
productEquality, 
unionElimination, 
addLevel
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].    uiff((\mforall{}x\mmember{}L.\muparrow{}P[x]);\muparrow{}reduce(\mlambda{}x,y.  (P[x]  \mwedge{}\msubb{}  y);tt;L))
Date html generated:
2019_06_20-PM-00_41_28
Last ObjectModification:
2018_08_24-PM-11_01_12
Theory : list_0
Home
Index