Nuprl Lemma : list-if-has-value-list_ind

b,f:Base.
  ∀l:Base. l ∈ Base List supposing (rec-case(l) of [] => a::b => r.f[a;r])↓ supposing ∀x:Base. strict(λu.f[x;u])


Proof




Definitions occuring in Statement :  list_ind: list_ind list: List strict: strict(F) has-value: (a)↓ uimplies: supposing a so_apply: x[s1;s2] all: x:A. B[x] member: t ∈ T lambda: λx.A[x] base: Base
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T list_ind: list_ind uall: [x:A]. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} prop: subtype_rel: A ⊆B so_apply: x[s1;s2] top: Top not: ¬A decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) true: True nat_plus: + has-value: (a)↓ so_lambda: λ2x.t[x] so_apply: x[s] cons: [a b] strict: strict(F) cand: c∧ B it: nil: []
Lemmas referenced :  nil_wf has-value-implies-dec-isaxiom-2 cons_wf strict_wf all_wf base_wf top_wf has-value-implies-dec-ispair-2 fun_exp_unroll_1 le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le bottom_diverge strictness-apply fun_exp0_lemma int_subtype_base has-value_wf_base less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule hypothesis compactness thin lemma_by_obid isectElimination hypothesisEquality setElimination rename intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed applyEquality because_Cache isect_memberEquality voidEquality unionElimination independent_pairFormation productElimination addEquality intEquality minusEquality dependent_set_memberEquality callbyvalueCallbyvalue callbyvalueReduce

Latex:
\mforall{}b,f:Base.
    \mforall{}l:Base.  l  \mmember{}  Base  List  supposing  (rec-case(l)  of  []  =>  b  |  a::b  =>  r.f[a;r])\mdownarrow{} 
    supposing  \mforall{}x:Base.  strict(\mlambda{}u.f[x;u])



Date html generated: 2016_05_14-AM-06_33_24
Last ObjectModification: 2016_01_14-PM-08_25_24

Theory : list_0


Home Index