Nuprl Lemma : list-if-has-value-list_ind
∀b,f:Base.
  ∀l:Base. l ∈ Base List supposing (rec-case(l) of [] => b | a::b => r.f[a;r])↓ supposing ∀x:Base. strict(λu.f[x;u])
Proof
Definitions occuring in Statement : 
list_ind: list_ind, 
list: T List
, 
strict: strict(F)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
base: Base
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
list_ind: list_ind, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s1;s2]
, 
top: Top
, 
not: ¬A
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
nat_plus: ℕ+
, 
has-value: (a)↓
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cons: [a / b]
, 
strict: strict(F)
, 
cand: A c∧ B
, 
it: ⋅
, 
nil: []
Lemmas referenced : 
nil_wf, 
has-value-implies-dec-isaxiom-2, 
cons_wf, 
strict_wf, 
all_wf, 
base_wf, 
top_wf, 
has-value-implies-dec-ispair-2, 
fun_exp_unroll_1, 
le-add-cancel, 
add-zero, 
add_functionality_wrt_le, 
add-commutes, 
add-swap, 
add-associates, 
minus-minus, 
minus-add, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
condition-implies-le, 
less-iff-le, 
not-ge-2, 
false_wf, 
subtract_wf, 
decidable__le, 
bottom_diverge, 
strictness-apply, 
fun_exp0_lemma, 
int_subtype_base, 
has-value_wf_base, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
hypothesis, 
compactness, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
because_Cache, 
isect_memberEquality, 
voidEquality, 
unionElimination, 
independent_pairFormation, 
productElimination, 
addEquality, 
intEquality, 
minusEquality, 
dependent_set_memberEquality, 
callbyvalueCallbyvalue, 
callbyvalueReduce
Latex:
\mforall{}b,f:Base.
    \mforall{}l:Base.  l  \mmember{}  Base  List  supposing  (rec-case(l)  of  []  =>  b  |  a::b  =>  r.f[a;r])\mdownarrow{} 
    supposing  \mforall{}x:Base.  strict(\mlambda{}u.f[x;u])
Date html generated:
2016_05_14-AM-06_33_24
Last ObjectModification:
2016_01_14-PM-08_25_24
Theory : list_0
Home
Index