Nuprl Lemma : comparison-seq_wf

[T:Type]. ∀[c1:comparison(T)]. ∀[c2:⋂a:T. comparison({b:T| (c1 b) 0 ∈ ℤ)].  (comparison-seq(c1; c2) ∈ comparison(\000CT))


Proof




Definitions occuring in Statement :  comparison-seq: comparison-seq(c1; c2) comparison: comparison(T) uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  apply: a isect: x:A. B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T comparison: comparison(T) comparison-seq: comparison-seq(c1; c2) and: P ∧ Q has-value: (a)↓ uimplies: supposing a all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) subtype_rel: A ⊆B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b false: False not: ¬A nequal: a ≠ b ∈  prop: decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top cand: c∧ B sq_stable: SqStable(P) squash: T true: True iff: ⇐⇒ Q le: A ≤ B
Lemmas referenced :  value-type-has-value eqtt_to_assert assert_of_eq_int int_subtype_base eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int istype-int istype-le comparison_wf equal-wf-base istype-universe decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf itermMinus_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_minus_lemma int_formula_prop_wf int-value-type comparison-reflexive minus-is-int-iff false_wf eq_int_wf bool_wf sq_stable__le nequal-le-implies equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal intformle_wf int_formula_prop_le_lemma decidable__le le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution setElimination thin rename Error :dependent_set_memberEquality_alt,  productElimination Error :lambdaEquality_alt,  sqequalRule callbyvalueReduce extract_by_obid isectElimination because_Cache independent_isectElimination hypothesis Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination int_eqReduceTrueSq equalityTransitivity equalitySymmetry applyEquality hypothesisEquality Error :equalityIstype,  baseClosed sqequalBase dependent_functionElimination independent_functionElimination Error :dependent_pairFormation_alt,  promote_hyp instantiate voidElimination int_eqReduceFalseSq independent_pairFormation Error :universeIsType,  Error :productIsType,  Error :functionIsType,  minusEquality natural_numberEquality axiomEquality Error :isectIsType,  setEquality intEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  universeEquality approximateComputation int_eqEquality cumulativity pointwiseFunctionality closedConclusion imageMemberEquality imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}[c1:comparison(T)].  \mforall{}[c2:\mcap{}a:T.  comparison(\{b:T|  (c1  a  b)  =  0\}  )].
    (comparison-seq(c1;  c2)  \mmember{}  comparison(T))



Date html generated: 2019_06_20-PM-01_42_24
Last ObjectModification: 2019_05_03-PM-02_10_37

Theory : list_1


Home Index