Nuprl Lemma : comparison-seq_wf
∀[T:Type]. ∀[c1:comparison(T)]. ∀[c2:⋂a:T. comparison({b:T| (c1 a b) = 0 ∈ ℤ} )].  (comparison-seq(c1; c2) ∈ comparison(\000CT))
Proof
Definitions occuring in Statement : 
comparison-seq: comparison-seq(c1; c2)
, 
comparison: comparison(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
isect: ⋂x:A. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
comparison: comparison(T)
, 
comparison-seq: comparison-seq(c1; c2)
, 
and: P ∧ Q
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
nequal: a ≠ b ∈ T 
, 
prop: ℙ
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
le: A ≤ B
Lemmas referenced : 
value-type-has-value, 
eqtt_to_assert, 
assert_of_eq_int, 
int_subtype_base, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
istype-int, 
istype-le, 
comparison_wf, 
equal-wf-base, 
istype-universe, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMinus_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_minus_lemma, 
int_formula_prop_wf, 
int-value-type, 
comparison-reflexive, 
minus-is-int-iff, 
false_wf, 
eq_int_wf, 
bool_wf, 
sq_stable__le, 
nequal-le-implies, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
intformle_wf, 
int_formula_prop_le_lemma, 
decidable__le, 
le_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
Error :dependent_set_memberEquality_alt, 
productElimination, 
Error :lambdaEquality_alt, 
sqequalRule, 
callbyvalueReduce, 
extract_by_obid, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
int_eqReduceTrueSq, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
hypothesisEquality, 
Error :equalityIstype, 
baseClosed, 
sqequalBase, 
dependent_functionElimination, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
promote_hyp, 
instantiate, 
voidElimination, 
int_eqReduceFalseSq, 
independent_pairFormation, 
Error :universeIsType, 
Error :productIsType, 
Error :functionIsType, 
minusEquality, 
natural_numberEquality, 
axiomEquality, 
Error :isectIsType, 
setEquality, 
intEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
universeEquality, 
approximateComputation, 
int_eqEquality, 
cumulativity, 
pointwiseFunctionality, 
closedConclusion, 
imageMemberEquality, 
imageElimination
Latex:
\mforall{}[T:Type].  \mforall{}[c1:comparison(T)].  \mforall{}[c2:\mcap{}a:T.  comparison(\{b:T|  (c1  a  b)  =  0\}  )].
    (comparison-seq(c1;  c2)  \mmember{}  comparison(T))
Date html generated:
2019_06_20-PM-01_42_24
Last ObjectModification:
2019_05_03-PM-02_10_37
Theory : list_1
Home
Index