Nuprl Lemma : last-map
∀[as:Top List]. ∀[f:Top].  last(map(f;as)) ~ f last(as) supposing ¬↑null(as)
Proof
Definitions occuring in Statement : 
last: last(L)
, 
null: null(as)
, 
map: map(f;as)
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
not: ¬A
, 
apply: f a
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
last: last(L)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
true: True
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
bfalse: ff
, 
guard: {T}
, 
nat: ℕ
, 
decidable: Dec(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
length-map, 
top_wf, 
select-map, 
subtract_nat_wf, 
length_wf, 
list-cases, 
length_of_nil_lemma, 
null_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
istype-void, 
null_cons_lemma, 
length_wf_nat, 
decidable__le, 
istype-false, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
istype-int, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-associates, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel2, 
nat_properties, 
subtract-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
itermSubtract_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
false_wf, 
decidable__lt, 
subtract_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
le_wf, 
less_than_wf, 
not_wf, 
assert_wf, 
null_wf, 
istype-top, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
Error :dependent_set_memberEquality_alt, 
independent_pairFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
independent_functionElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
Error :isect_memberEquality_alt, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
setElimination, 
rename, 
addEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyEquality, 
Error :lambdaEquality_alt, 
minusEquality, 
Error :equalityIsType1, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :universeIsType, 
Error :productIsType, 
axiomSqEquality
Latex:
\mforall{}[as:Top  List].  \mforall{}[f:Top].    last(map(f;as))  \msim{}  f  last(as)  supposing  \mneg{}\muparrow{}null(as)
Date html generated:
2019_06_20-PM-01_33_44
Last ObjectModification:
2018_10_06-AM-11_23_20
Theory : list_1
Home
Index