Nuprl Lemma : reduce-as-combine-list

[A:Type]. ∀[f:A ⟶ A ⟶ A].
  (∀[L:A List]. ∀[z:A].  (reduce(f;z;L) combine-list(x,y.f[x;y];[z L]) ∈ A)) supposing 
     (Comm(A;λx,y. f[x;y]) and 
     Assoc(A;λx,y. f[x;y]))


Proof




Definitions occuring in Statement :  combine-list: combine-list(x,y.f[x; y];L) reduce: reduce(f;k;as) cons: [a b] list: List comm: Comm(T;op) assoc: Assoc(T;op) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  so_apply: x[s1;s2] combine-list: combine-list(x,y.f[x; y];L) comm: Comm(T;op) assoc: Assoc(T;op) infix_ap: y all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: or: P ∨ Q so_lambda: λ2y.t[x; y] cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T decidable: Dec(P) subtype_rel: A ⊆B true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  reduce_hd_cons_lemma reduce_tl_cons_lemma nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases reduce_nil_lemma list_accum_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list istype-void istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf reduce_cons_lemma list_accum_cons_lemma equal_wf squash_wf true_wf reduce_wf subtype_rel_self iff_weakening_equal istype-nat list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin Error :memTop,  hypothesis isect_memberFormation_alt lambdaFormation_alt isectElimination hypothesisEquality setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation universeIsType voidElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType functionIsTypeImplies unionElimination because_Cache promote_hyp hypothesis_subsumption productElimination equalityIstype dependent_set_memberEquality_alt instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase imageMemberEquality isectIsType functionIsType universeEquality hyp_replacement

Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (\mforall{}[L:A  List].  \mforall{}[z:A].    (reduce(f;z;L)  =  combine-list(x,y.f[x;y];[z  /  L])))  supposing 
          (Comm(A;\mlambda{}x,y.  f[x;y])  and 
          Assoc(A;\mlambda{}x,y.  f[x;y]))



Date html generated: 2020_05_19-PM-09_45_07
Last ObjectModification: 2019_12_31-PM-00_13_15

Theory : list_1


Home Index