Nuprl Lemma : remove-first-member-implies
∀[T:Type]. ∀L:T List. ∀P:{x:T| (x ∈ L)} ⟶ 𝔹. ∀x:T. ((x ∈ remove-first(P;L))
⇒ (x ∈ L))
Proof
Definitions occuring in Statement :
remove-first: remove-first(P;L)
,
l_member: (x ∈ l)
,
list: T List
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
set: {x:A| B[x]}
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
so_apply: x[s]
,
remove-first: remove-first(P;L)
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
false: False
,
list_ind: list_ind,
nil: []
,
it: ⋅
,
rev_implies: P
⇐ Q
,
or: P ∨ Q
,
uimplies: b supposing a
,
sq_type: SQType(T)
,
guard: {T}
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
bfalse: ff
,
subtype_rel: A ⊆r B
Lemmas referenced :
list_induction,
all_wf,
l_member_wf,
bool_wf,
remove-first_wf,
list_wf,
list_ind_nil_lemma,
nil_member,
nil_wf,
list_ind_cons_lemma,
cons_wf,
cons_member,
bool_cases,
subtype_base_sq,
bool_subtype_base,
eqtt_to_assert,
equal_wf,
eqff_to_assert,
assert_of_bnot,
subtype_rel_dep_function,
subtype_rel_sets,
subtype_rel_self,
set_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
thin,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
lambdaEquality,
functionEquality,
setEquality,
cumulativity,
hypothesis,
functionExtensionality,
applyEquality,
independent_functionElimination,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
productElimination,
rename,
because_Cache,
inlFormation,
dependent_set_memberEquality,
equalityTransitivity,
equalitySymmetry,
unionElimination,
instantiate,
independent_isectElimination,
inrFormation,
setElimination,
hyp_replacement,
Error :applyLambdaEquality,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}L:T List. \mforall{}P:\{x:T| (x \mmember{} L)\} {}\mrightarrow{} \mBbbB{}. \mforall{}x:T. ((x \mmember{} remove-first(P;L)) {}\mRightarrow{} (x \mmember{} L))
Date html generated:
2016_10_21-AM-10_27_23
Last ObjectModification:
2016_07_12-AM-05_39_43
Theory : list_1
Home
Index