Nuprl Lemma : code-seq_wf

[k:ℕ]. ∀[s:ℕk ⟶ ℕ].  (code-seq(k;s) ∈ ℕ)


Proof




Definitions occuring in Statement :  code-seq: code-seq(k;s) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T code-seq: code-seq(k;s) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: bfalse: ff iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B guard: {T}
Lemmas referenced :  eq_int_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf eqtt_to_assert assert_of_eq_int false_wf le_wf iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot code-pair_wf subtract_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf add_nat_wf code-seq1_wf int_seg_wf nat_wf add-is-int-iff itermAdd_wf int_term_value_add_lemma equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed intEquality hypothesisEquality independent_functionElimination productElimination independent_isectElimination dependent_set_memberEquality independent_pairFormation impliesFunctionality addEquality dependent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidElimination voidEquality computeAll applyEquality functionExtensionality applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion axiomEquality functionEquality

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[s:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}].    (code-seq(k;s)  \mmember{}  \mBbbN{})



Date html generated: 2019_06_20-PM-02_40_17
Last ObjectModification: 2019_06_12-PM-00_28_19

Theory : num_thy_1


Home Index