Nuprl Lemma : integer-nth-root2
∀n:{n:ℕ+| (n mod 2) = 1 ∈ ℤ} . ∀x:{...0}.  (∃r:{...0} [((r - 1)^n < x ∧ (x ≤ r^n))])
Proof
Definitions occuring in Statement : 
exp: i^n
, 
modulus: a mod n
, 
int_lower: {...i}
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
int_lower: {...i}
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
sq_exists: ∃x:A [B[x]]
, 
ge: i ≥ j 
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
le: A ≤ B
Lemmas referenced : 
subtract_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
exp_wf2, 
decidable__lt, 
set_subtype_base, 
iff_weakening_equal, 
nat_plus_subtype_nat, 
nat_wf, 
exp-minus, 
true_wf, 
squash_wf, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
itermAdd_wf, 
itermSubtract_wf, 
intformeq_wf, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
nat_properties, 
int-subtype-int_mod, 
int_mod_wf, 
subtype_rel_set, 
less_than_wf, 
modulus_wf_int_mod, 
equal-wf-T-base, 
nat_plus_wf, 
set_wf, 
int_lower_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_minus_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermMinus_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_plus_properties, 
sq_stable__equal, 
int_lower_properties, 
integer-nth-root-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
dependent_set_memberEquality, 
minusEquality, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
introduction, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
comment, 
applyEquality, 
dependent_set_memberFormation, 
productElimination, 
instantiate, 
addEquality, 
universeEquality, 
productEquality
Latex:
\mforall{}n:\{n:\mBbbN{}\msupplus{}|  (n  mod  2)  =  1\}  .  \mforall{}x:\{...0\}.    (\mexists{}r:\{...0\}  [((r  -  1)\^{}n  <  x  \mwedge{}  (x  \mleq{}  r\^{}n))])
Date html generated:
2019_06_20-PM-02_33_47
Last ObjectModification:
2019_03_19-AM-10_49_03
Theory : num_thy_1
Home
Index