Nuprl Lemma : is_power_wf
∀[n:ℕ+]. ∀[x:ℤ]. (is_power(n;x) ∈ 𝔹)
Proof
Definitions occuring in Statement :
is_power: is_power(n;z)
,
nat_plus: ℕ+
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
is_power: is_power(n;z)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
less_than: a < b
,
less_than': less_than'(a;b)
,
top: Top
,
true: True
,
squash: ↓T
,
not: ¬A
,
false: False
,
nat_plus: ℕ+
,
int_nzero: ℤ-o
,
nequal: a ≠ b ∈ T
,
sq_type: SQType(T)
,
guard: {T}
,
prop: ℙ
,
or: P ∨ Q
,
nat: ℕ
,
decidable: Dec(P)
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
bfalse: ff
,
band: p ∧b q
,
ifthenelse: if b then t else f fi
,
bnot: ¬bb
,
assert: ↑b
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
Lemmas referenced :
lt_int_wf,
eqtt_to_assert,
assert_of_lt_int,
istype-top,
istype-void,
eq_int_wf,
remainder_wfa,
subtype_base_sq,
int_subtype_base,
nequal_wf,
bool_cases,
bool_subtype_base,
band_wf,
btrue_wf,
is-power_wf,
nat_plus_properties,
decidable__le,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermMinus_wf,
itermVar_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_minus_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
istype-le,
bfalse_wf,
eqff_to_assert,
bool_cases_sqequal,
bool_wf,
assert-bnot,
iff_weakening_uiff,
assert_wf,
less_than_wf,
istype-less_than,
nat_plus_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
hypothesisEquality,
closedConclusion,
natural_numberEquality,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
hypothesis,
Error :inhabitedIsType,
Error :lambdaFormation_alt,
unionElimination,
equalityElimination,
productElimination,
independent_isectElimination,
lessCases,
axiomSqEquality,
Error :isect_memberEquality_alt,
Error :isectIsTypeImplies,
independent_pairFormation,
voidElimination,
imageMemberEquality,
baseClosed,
imageElimination,
independent_functionElimination,
setElimination,
rename,
Error :dependent_set_memberEquality_alt,
instantiate,
cumulativity,
intEquality,
dependent_functionElimination,
equalityTransitivity,
equalitySymmetry,
Error :equalityIstype,
sqequalBase,
Error :universeIsType,
minusEquality,
approximateComputation,
Error :dependent_pairFormation_alt,
Error :lambdaEquality_alt,
int_eqEquality,
promote_hyp,
axiomEquality
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}]. \mforall{}[x:\mBbbZ{}]. (is\_power(n;x) \mmember{} \mBbbB{})
Date html generated:
2019_06_20-PM-02_34_31
Last ObjectModification:
2019_03_19-AM-11_12_56
Theory : num_thy_1
Home
Index