Nuprl Lemma : not-prime-mult
∀[n,m:{2...}]. ∀[x:ℤ].  (¬prime((n * m) * x))
Proof
Definitions occuring in Statement : 
prime: prime(a), 
int_upper: {i...}, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
multiply: n * m, 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
all: ∀x:A. B[x], 
and: P ∧ Q, 
prop: ℙ, 
int_upper: {i...}, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
le: A ≤ B, 
less_than': less_than'(a;b), 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
atomic: atomic(a), 
reducible: reducible(a), 
int_nzero: ℤ-o, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nequal: a ≠ b ∈ T , 
cand: A c∧ B, 
iff: P ⇐⇒ Q
Lemmas referenced : 
prime-mult, 
prime_wf, 
int_upper_wf, 
int_upper_properties, 
mul_preserves_le, 
upper_subtype_nat, 
false_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
prime_imp_atomic, 
subtype_rel_sets, 
nequal_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
int_subtype_base, 
assoced_elim, 
assoced_wf, 
not_wf, 
equal_wf, 
exists_wf, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
because_Cache, 
voidElimination, 
isectElimination, 
multiplyEquality, 
setElimination, 
rename, 
sqequalRule, 
lambdaEquality, 
intEquality, 
isect_memberEquality, 
natural_numberEquality, 
applyEquality, 
independent_isectElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
voidEquality, 
setEquality, 
baseClosed, 
minusEquality, 
productEquality
Latex:
\mforall{}[n,m:\{2...\}].  \mforall{}[x:\mBbbZ{}].    (\mneg{}prime((n  *  m)  *  x))
Date html generated:
2019_06_20-PM-02_23_14
Last ObjectModification:
2018_09_22-PM-06_07_09
Theory : num_thy_1
Home
Index