Nuprl Lemma : pair_support_double_sum

[n,m:ℕ]. ∀[f:ℕn ⟶ ℕm ⟶ ℤ]. ∀[x1,x2:ℕn]. ∀[y1,y2:ℕm].
  (sum(f[x;y] x < n; y < m) (f[x1;y1] f[x2;y2]) ∈ ℤsupposing 
     ((∀x:ℕn. ∀y:ℕm.  ((¬((x x1 ∈ ℤ) ∧ (y y1 ∈ ℤ)))  ((x x2 ∈ ℤ) ∧ (y y2 ∈ ℤ)))  (f[x;y] 0 ∈ ℤ))) and 
     ((¬(x1 x2 ∈ ℤ)) ∨ (y1 y2 ∈ ℤ))))


Proof




Definitions occuring in Statement :  double_sum: sum(f[x; y] x < n; y < m) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a double_sum: sum(f[x; y] x < n; y < m) all: x:A. B[x] int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q implies:  Q prop: and: P ∧ Q so_apply: x[s1;s2] nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q iff: ⇐⇒ Q true: True top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  lelt: i ≤ j < k false: False guard: {T} not: ¬A squash: T sq_type: SQType(T)
Lemmas referenced :  decidable__equal_int not_wf equal_wf istype-int int_seg_wf int_subtype_base nat_wf singleton_support_sum sum_wf equal-wf-base set_subtype_base lelt_wf iff_weakening_equal subtype_rel_self int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf intformeq_wf intformand_wf full-omega-unsat nat_properties int_seg_properties true_wf squash_wf empty_support int_term_value_add_lemma itermAdd_wf member_wf int_formula_prop_or_lemma intformor_wf pair_support subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename because_Cache hypothesis unionElimination sqequalRule Error :functionIsType,  Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  isectElimination productEquality intEquality Error :equalityIsType4,  applyEquality functionExtensionality natural_numberEquality Error :isect_memberEquality_alt,  axiomEquality equalityTransitivity equalitySymmetry Error :unionIsType,  Error :lambdaEquality_alt,  independent_isectElimination Error :lambdaFormation_alt,  instantiate baseClosed imageMemberEquality independent_pairFormation voidEquality isect_memberEquality int_eqEquality dependent_pairFormation approximateComputation voidElimination productElimination independent_functionElimination universeEquality imageElimination lambdaFormation lambdaEquality dependent_set_memberEquality addEquality promote_hyp cumulativity

Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[x1,x2:\mBbbN{}n].  \mforall{}[y1,y2:\mBbbN{}m].
    (sum(f[x;y]  |  x  <  n;  y  <  m)  =  (f[x1;y1]  +  f[x2;y2]))  supposing 
          ((\mforall{}x:\mBbbN{}n.  \mforall{}y:\mBbbN{}m.    ((\mneg{}((x  =  x1)  \mwedge{}  (y  =  y1)))  {}\mRightarrow{}  (\mneg{}((x  =  x2)  \mwedge{}  (y  =  y2)))  {}\mRightarrow{}  (f[x;y]  =  0)))  and 
          ((\mneg{}(x1  =  x2))  \mvee{}  (\mneg{}(y1  =  y2))))



Date html generated: 2019_06_20-PM-02_29_38
Last ObjectModification: 2018_10_05-AM-11_03_56

Theory : num_thy_1


Home Index