Nuprl Lemma : pair_support
∀[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. ∀[m,k:ℕn].
  (Σ(f[x] | x < n) = (f[m] + f[k]) ∈ ℤ) supposing 
     ((∀x:ℕn. ((¬(x = m ∈ ℤ)) 
⇒ (¬(x = k ∈ ℤ)) 
⇒ (f[x] = 0 ∈ ℤ))) and 
     (¬(m = k ∈ ℤ)))
Proof
Definitions occuring in Statement : 
sum: Σ(f[x] | x < k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
so_apply: x[s]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
squash: ↓T
, 
nequal: a ≠ b ∈ T 
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
decidable: Dec(P)
Lemmas referenced : 
not_wf, 
equal_wf, 
equal-wf-T-base, 
all_wf, 
int_seg_wf, 
nat_wf, 
isolate_summand, 
singleton_support_sum, 
ifthenelse_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
eq_int_eq_false, 
int_seg_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
bfalse_wf, 
false_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
satisfiable-full-omega-tt, 
add-is-int-iff, 
decidable__equal_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
sqequalRule, 
Error :functionIsType, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
baseClosed, 
isect_memberEquality, 
axiomEquality, 
natural_numberEquality, 
lambdaEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
approximateComputation, 
int_eqEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
closedConclusion, 
baseApply, 
pointwiseFunctionality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[m,k:\mBbbN{}n].
    (\mSigma{}(f[x]  |  x  <  n)  =  (f[m]  +  f[k]))  supposing 
          ((\mforall{}x:\mBbbN{}n.  ((\mneg{}(x  =  m))  {}\mRightarrow{}  (\mneg{}(x  =  k))  {}\mRightarrow{}  (f[x]  =  0)))  and 
          (\mneg{}(m  =  k)))
Date html generated:
2019_06_20-PM-02_29_27
Last ObjectModification:
2018_09_26-PM-06_03_38
Theory : num_thy_1
Home
Index