Nuprl Lemma : pair_support

[n:ℕ]. ∀[f:ℕn ⟶ ℤ]. ∀[m,k:ℕn].
  (f[x] x < n) (f[m] f[k]) ∈ ℤsupposing 
     ((∀x:ℕn. ((¬(x m ∈ ℤ))  (x k ∈ ℤ))  (f[x] 0 ∈ ℤ))) and 
     (m k ∈ ℤ)))


Proof




Definitions occuring in Statement :  sum: Σ(f[x] x < k) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] not: ¬A implies:  Q function: x:A ⟶ B[x] add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q int_seg: {i..j-} prop: so_apply: x[s] nat: so_lambda: λ2x.t[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False squash: T nequal: a ≠ b ∈  true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q lelt: i ≤ j < k ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top decidable: Dec(P)
Lemmas referenced :  not_wf equal_wf equal-wf-T-base all_wf int_seg_wf nat_wf isolate_summand singleton_support_sum ifthenelse_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int squash_wf true_wf subtype_rel_self iff_weakening_equal eq_int_eq_false int_seg_properties nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf equal-wf-base int_subtype_base bfalse_wf false_wf int_term_value_add_lemma itermAdd_wf satisfiable-full-omega-tt add-is-int-iff decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis sqequalRule Error :functionIsType,  Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin intEquality setElimination rename because_Cache applyEquality baseClosed isect_memberEquality axiomEquality natural_numberEquality lambdaEquality functionEquality equalityTransitivity equalitySymmetry independent_isectElimination lambdaFormation unionElimination equalityElimination productElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination imageElimination universeEquality imageMemberEquality approximateComputation int_eqEquality voidEquality independent_pairFormation computeAll closedConclusion baseApply pointwiseFunctionality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[m,k:\mBbbN{}n].
    (\mSigma{}(f[x]  |  x  <  n)  =  (f[m]  +  f[k]))  supposing 
          ((\mforall{}x:\mBbbN{}n.  ((\mneg{}(x  =  m))  {}\mRightarrow{}  (\mneg{}(x  =  k))  {}\mRightarrow{}  (f[x]  =  0)))  and 
          (\mneg{}(m  =  k)))



Date html generated: 2019_06_20-PM-02_29_27
Last ObjectModification: 2018_09_26-PM-06_03_38

Theory : num_thy_1


Home Index