Nuprl Lemma : evalall-append-implies-rec-value

[a,b:Base].  b ∈ rec-value() supposing (evalall(a b))↓


Proof




Definitions occuring in Statement :  rec-value: rec-value() append: as bs has-value: (a)↓ evalall: evalall(t) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q subtype_rel: A ⊆B guard: {T} or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) uiff: uiff(P;Q) has-value: (a)↓
Lemmas referenced :  evalall-append-implies-list list_wf rec-value_wf equal_wf has-value_wf_base base_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list_subtype_base rec-value_subype_base equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases list_ind_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int list_ind_cons_lemma rec-value-evalall evalall-cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis equalityTransitivity equalitySymmetry lambdaFormation dependent_functionElimination independent_functionElimination sqequalRule axiomEquality baseApply closedConclusion baseClosed isect_memberEquality because_Cache setElimination rename intWeakElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality unionElimination promote_hyp hypothesis_subsumption productElimination applyLambdaEquality dependent_set_memberEquality addEquality instantiate cumulativity imageElimination callbyvalueCallbyvalue callbyvalueReduce

Latex:
\mforall{}[a,b:Base].    b  \mmember{}  rec-value()  supposing  (evalall(a  @  b))\mdownarrow{}



Date html generated: 2017_04_17-AM-09_07_45
Last ObjectModification: 2017_02_27-PM-05_16_58

Theory : rec_values


Home Index