Nuprl Lemma : append-tuple-one-one
∀[L1,L2:Type List].
  ∀[x1,x2:tuple-type(L1)]. ∀[y1,y2:tuple-type(L2)].
    {(x1 = x2 ∈ tuple-type(L1)) ∧ (y1 = y2 ∈ tuple-type(L2))} 
    supposing append-tuple(||L1||;||L2||;x1;y1) = append-tuple(||L1||;||L2||;x2;y2) ∈ tuple-type(L1 @ L2) 
  supposing 0 < ||L2||
Proof
Definitions occuring in Statement : 
append-tuple: append-tuple(n;m;x;y)
, 
tuple-type: tuple-type(L)
, 
length: ||as||
, 
append: as @ bs
, 
list: T List
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
and: P ∧ Q
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
int_iseg: {i...j}
, 
cand: A c∧ B
Lemmas referenced : 
split-tuple_wf, 
append_wf, 
non_neg_length, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
length-append, 
decidable__lt, 
length_wf, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
istype-le, 
istype-less_than, 
tuple-type_wf, 
append-tuple_wf, 
list_wf, 
split-tuple-append-tuple, 
pi1_wf, 
firstn_wf, 
nth_tl_wf, 
pi2_wf, 
subtype_rel_tuple-type, 
nth_tl_append, 
subtype_rel-equal, 
select_wf, 
int_seg_properties, 
length_append, 
subtype_rel_list, 
top_wf, 
istype-universe, 
length_nth_tl, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
int_seg_wf, 
equal_functionality_wrt_subtype_rel2, 
firstn_append, 
firstn_length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
applyLambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
instantiate, 
closedConclusion, 
universeEquality, 
hypothesisEquality, 
hypothesis, 
Error :dependent_set_memberEquality_alt, 
because_Cache, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
productElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
Error :universeIsType, 
addEquality, 
imageElimination, 
Error :productIsType, 
independent_pairEquality, 
axiomEquality, 
Error :equalityIstype, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
setElimination, 
rename, 
applyEquality, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[L1,L2:Type  List].
    \mforall{}[x1,x2:tuple-type(L1)].  \mforall{}[y1,y2:tuple-type(L2)].
        \{(x1  =  x2)  \mwedge{}  (y1  =  y2)\} 
        supposing  append-tuple(||L1||;||L2||;x1;y1)  =  append-tuple(||L1||;||L2||;x2;y2) 
    supposing  0  <  ||L2||
Date html generated:
2019_06_20-PM-02_03_42
Last ObjectModification:
2018_12_07-PM-06_36_19
Theory : tuples
Home
Index