Nuprl Lemma : append-tuple_wf

[L1,L2:Type List]. ∀[x:tuple-type(L1)]. ∀[y:tuple-type(L2)].  (append-tuple(||L1||;||L2||;x;y) ∈ tuple-type(L1 L2))


Proof




Definitions occuring in Statement :  append-tuple: append-tuple(n;m;x;y) tuple-type: tuple-type(L) length: ||as|| append: as bs list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uiff: uiff(P;Q) unit: Unit bool: 𝔹 less_than': less_than'(a;b) squash: T less_than: a < b sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] it: nil: [] decidable: Dec(P) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] colength: colength(L) cons: [a b] btrue: tt subtract: m eq_int: (i =z j) bfalse: ff ifthenelse: if then else fi  bnot: ¬bb lt_int: i <j le_int: i ≤j append-tuple: append-tuple(n;m;x;y) so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs or: P ∨ Q guard: {T} subtype_rel: A ⊆B prop: and: P ∧ Q top: Top not: ¬A exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  false: False implies:  Q nat: all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] true: True nat_plus: + le: A ≤ B assert: b rev_implies:  Q iff: ⇐⇒ Q
Lemmas referenced :  ifthenelse_wf assert_of_null eqtt_to_assert assert_wf uiff_transitivity bool_wf append_wf null_wf length_of_cons_lemma list_ind_cons_lemma tupletype_cons_lemma decidable__equal_int int_subtype_base set_subtype_base subtype_base_sq int_term_value_subtract_lemma itermSubtract_wf subtract_wf equal_wf le_wf int_formula_prop_not_lemma intformnot_wf decidable__le int_term_value_add_lemma int_formula_prop_eq_lemma itermAdd_wf intformeq_wf spread_cons_lemma product_subtype_list unit_wf2 length_of_nil_lemma list_ind_nil_lemma tupletype_nil_lemma list-cases less_than_irreflexivity less_than_transitivity1 colength_wf_list nat_wf equal-wf-T-base list_wf tuple-type_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties null_cons_lemma length_wf null_nil_lemma add_nat_plus length_wf_nat decidable__lt full-omega-unsat istype-int istype-void istype-less_than nat_plus_properties add-is-int-iff false_wf le_int_wf assert_of_le_int non_neg_length eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot iff_weakening_uiff istype-le btrue_neq_bfalse iff_imp_equal_bool iff_functionality_wrt_iff iff_weakening_equal eq_int_wf assert_of_eq_int neg_assert_of_eq_int add-subtract-cancel
Rules used in proof :  productEquality equalityElimination imageElimination cumulativity baseClosed addEquality dependent_set_memberEquality applyLambdaEquality productElimination hypothesis_subsumption promote_hyp unionElimination because_Cache applyEquality universeEquality instantiate equalitySymmetry equalityTransitivity axiomEquality independent_functionElimination computeAll independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination natural_numberEquality intWeakElimination sqequalRule rename setElimination hypothesis hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid lambdaFormation thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution Error :dependent_set_memberEquality_alt,  approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  Error :universeIsType,  Error :inhabitedIsType,  Error :lambdaFormation_alt,  pointwiseFunctionality baseApply closedConclusion Error :equalityIstype,  independent_pairEquality

Latex:
\mforall{}[L1,L2:Type  List].  \mforall{}[x:tuple-type(L1)].  \mforall{}[y:tuple-type(L2)].
    (append-tuple(||L1||;||L2||;x;y)  \mmember{}  tuple-type(L1  @  L2))



Date html generated: 2019_06_20-PM-02_03_35
Last ObjectModification: 2018_12_07-AM-01_29_03

Theory : tuples


Home Index