Nuprl Lemma : bag-bind-assoc
∀[A,B,C:Type]. ∀[f:A ⟶ bag(B)]. ∀[g:B ⟶ bag(C)]. ∀[bs:bag(A)].
  (bag-bind(bag-bind(bs;f);g) = bag-bind(bs;λa.bag-bind(f a;g)) ∈ bag(C))
Proof
Definitions occuring in Statement : 
bag-bind: bag-bind(bs;f)
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-bind: bag-bind(bs;f)
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
empty-bag: {}
, 
concat: concat(ll)
, 
top: Top
, 
bag-union: bag-union(bbs)
, 
bag-map: bag-map(f;bs)
, 
bag-append: as + bs
Lemmas referenced : 
bag_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
bag-union_wf, 
bag-map_wf, 
subtype_rel_self, 
list-subtype-bag, 
iff_weakening_equal, 
list_wf, 
permutation_wf, 
list_induction, 
empty-bag_wf, 
reduce_nil_lemma, 
map_nil_lemma, 
reduce_cons_lemma, 
map_cons_lemma, 
map_append_sq, 
bag-append_wf, 
bag-append-union
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
pertypeElimination, 
productElimination, 
rename, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
inhabitedIsType, 
universeEquality, 
because_Cache, 
functionIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
instantiate, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
productIsType, 
equalityIsType4, 
isect_memberEquality_alt, 
axiomEquality, 
functionExtensionality, 
lambdaEquality, 
cumulativity, 
dependent_functionElimination, 
lambdaFormation, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
levelHypothesis, 
equalityUniverse
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[g:B  {}\mrightarrow{}  bag(C)].  \mforall{}[bs:bag(A)].
    (bag-bind(bag-bind(bs;f);g)  =  bag-bind(bs;\mlambda{}a.bag-bind(f  a;g)))
Date html generated:
2019_10_15-AM-11_05_44
Last ObjectModification:
2018_10_09-AM-10_52_35
Theory : bags
Home
Index