Nuprl Lemma : bag-count-drop-trivial
∀[T:Type]. ∀eq:EqDecider(T). ∀[x,y:T]. ∀[bs:bag(T)].  (#y in bag-drop(eq;bs;x)) = (#y in bs) ∈ ℕ supposing ¬(x = y ∈ T)
Proof
Definitions occuring in Statement : 
bag-drop: bag-drop(eq;bs;a)
, 
bag-count: (#x in bs)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
bag-drop: bag-drop(eq;bs;a)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
squash: ↓T
, 
prop: ℙ
, 
label: ...$L... t
, 
decidable: Dec(P)
, 
false: False
, 
uiff: uiff(P;Q)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
nat: ℕ
, 
guard: {T}
, 
ge: i ≥ j 
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
bag-count: (#x in bs)
, 
count: count(P;L)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
single-bag: {x}
, 
cons: [a / b]
, 
ifthenelse: if b then t else f fi 
, 
nil: []
, 
it: ⋅
, 
deq: EqDecider(T)
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
eqof: eqof(d)
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
bag-remove1-property, 
equal_wf, 
squash_wf, 
true_wf, 
nat_wf, 
bag-count_wf, 
bag-count-append, 
single-bag_wf, 
decidable__equal_int, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
false_wf, 
decidable__le, 
nat_properties, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
le_wf, 
iff_weakening_equal, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
not_wf, 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
decide_bfalse_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
unionElimination, 
productElimination, 
hypothesis, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
pointwiseFunctionality, 
rename, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
independent_isectElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
imageMemberEquality, 
universeEquality, 
independent_functionElimination, 
instantiate, 
addEquality, 
hyp_replacement, 
axiomEquality, 
equalityElimination
Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T)
        \mforall{}[x,y:T].  \mforall{}[bs:bag(T)].    (\#y  in  bag-drop(eq;bs;x))  =  (\#y  in  bs)  supposing  \mneg{}(x  =  y)
Date html generated:
2018_05_21-PM-09_48_38
Last ObjectModification:
2017_07_26-PM-06_30_43
Theory : bags_2
Home
Index