Nuprl Lemma : bag-count-drop-trivial

[T:Type]. ∀eq:EqDecider(T). ∀[x,y:T]. ∀[bs:bag(T)].  (#y in bag-drop(eq;bs;x)) (#y in bs) ∈ ℕ supposing ¬(x y ∈ T)


Proof




Definitions occuring in Statement :  bag-drop: bag-drop(eq;bs;a) bag-count: (#x in bs) bag: bag(T) deq: EqDecider(T) nat: uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a bag-drop: bag-drop(eq;bs;a) or: P ∨ Q exists: x:A. B[x] and: P ∧ Q squash: T prop: label: ...$L... t decidable: Dec(P) false: False uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) implies:  Q not: ¬A top: Top nat: guard: {T} ge: i ≥  true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) bag-count: (#x in bs) count: count(P;L) reduce: reduce(f;k;as) list_ind: list_ind single-bag: {x} cons: [a b] ifthenelse: if then else fi  nil: [] it: deq: EqDecider(T) bool: 𝔹 unit: Unit btrue: tt eqof: eqof(d) le: A ≤ B less_than': less_than'(a;b) bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  bag-remove1-property equal_wf squash_wf true_wf nat_wf bag-count_wf bag-count-append single-bag_wf decidable__equal_int add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_wf false_wf decidable__le nat_properties intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma le_wf iff_weakening_equal subtype_base_sq set_subtype_base int_subtype_base not_wf bool_wf eqtt_to_assert safe-assert-deq eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot decide_bfalse_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality unionElimination productElimination hypothesis sqequalRule applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry cumulativity pointwiseFunctionality rename promote_hyp baseApply closedConclusion baseClosed independent_isectElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll dependent_set_memberEquality applyLambdaEquality setElimination imageMemberEquality universeEquality independent_functionElimination instantiate addEquality hyp_replacement axiomEquality equalityElimination

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T)
        \mforall{}[x,y:T].  \mforall{}[bs:bag(T)].    (\#y  in  bag-drop(eq;bs;x))  =  (\#y  in  bs)  supposing  \mneg{}(x  =  y)



Date html generated: 2018_05_21-PM-09_48_38
Last ObjectModification: 2017_07_26-PM-06_30_43

Theory : bags_2


Home Index