Nuprl Lemma : bag-size-partition
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)].  (#(bs) = Σ(x∈bag-remove-repeats(eq;bs)). (#x in bs) ∈ ℤ)
Proof
Definitions occuring in Statement : 
bag-remove-repeats: bag-remove-repeats(eq;bs)
, 
bag-count: (#x in bs)
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-size: #(bs)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
deq: EqDecider(T)
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
monoid_p: IsMonoid(T;op;id)
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
ident: Ident(T;op;id)
, 
comm: Comm(T;op)
, 
sq_exists: ∃x:A [B[x]]
, 
uiff: uiff(P;Q)
, 
eqof: eqof(d)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
nat: ℕ
Lemmas referenced : 
bag_wf, 
deq_wf, 
decidable-equal-deq, 
bag-remove-repeats_wf, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
itermConstant_wf, 
int_term_value_constant_lemma, 
member-bag-remove-repeats, 
safe-assert-deq, 
bag-member_wf, 
assert_wf, 
set_wf, 
bag-remove-repeats-no-repeats, 
bag-summation-partition, 
iff_weakening_equal, 
bag-size-as-summation, 
true_wf, 
squash_wf, 
equal_wf, 
satisfiable-full-omega-tt, 
comm_wf, 
assoc_wf, 
bag-summation_wf, 
bag-filter_wf, 
nat_wf, 
bag-count_wf, 
bag-count-sqequal, 
iff_wf, 
eqof_wf, 
iff_imp_equal_bool, 
bag-size_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
universeEquality, 
lambdaFormation, 
independent_functionElimination, 
dependent_functionElimination, 
intEquality, 
lambdaEquality, 
addEquality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_pairFormation, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
voidElimination, 
voidEquality, 
productElimination, 
independent_pairEquality, 
dependent_set_memberFormation, 
productEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
hyp_replacement, 
computeAll, 
functionEquality, 
functionExtensionality, 
cumulativity, 
setEquality, 
impliesLevelFunctionality, 
andLevelFunctionality, 
levelHypothesis, 
impliesFunctionality, 
addLevel
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].    (\#(bs)  =  \mSigma{}(x\mmember{}bag-remove-repeats(eq;bs)).  (\#x  in  bs))
Date html generated:
2019_10_16-AM-11_31_40
Last ObjectModification:
2018_08_22-AM-09_39_28
Theory : bags_2
Home
Index