Nuprl Lemma : bag-size-partition

[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)].  (#(bs) = Σ(x∈bag-remove-repeats(eq;bs)). (#x in bs) ∈ ℤ)


Proof




Definitions occuring in Statement :  bag-remove-repeats: bag-remove-repeats(eq;bs) bag-count: (#x in bs) bag-summation: Σ(x∈b). f[x] bag-size: #(bs) bag: bag(T) deq: EqDecider(T) uall: [x:A]. B[x] lambda: λx.A[x] add: m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q deq: EqDecider(T) so_apply: x[s1;s2] and: P ∧ Q cand: c∧ B monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) infix_ap: y decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: ident: Ident(T;op;id) comm: Comm(T;op) sq_exists: x:A [B[x]] uiff: uiff(P;Q) eqof: eqof(d) rev_uimplies: rev_uimplies(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True squash: T nat:
Lemmas referenced :  bag_wf deq_wf decidable-equal-deq bag-remove-repeats_wf decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermAdd_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf itermConstant_wf int_term_value_constant_lemma member-bag-remove-repeats safe-assert-deq bag-member_wf assert_wf set_wf bag-remove-repeats-no-repeats bag-summation-partition iff_weakening_equal bag-size-as-summation true_wf squash_wf equal_wf satisfiable-full-omega-tt comm_wf assoc_wf bag-summation_wf bag-filter_wf nat_wf bag-count_wf bag-count-sqequal iff_wf eqof_wf iff_imp_equal_bool bag-size_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache universeEquality lambdaFormation independent_functionElimination dependent_functionElimination intEquality lambdaEquality addEquality natural_numberEquality setElimination rename independent_pairFormation unionElimination independent_isectElimination approximateComputation dependent_pairFormation int_eqEquality voidElimination voidEquality productElimination independent_pairEquality dependent_set_memberFormation productEquality applyEquality equalityTransitivity equalitySymmetry baseClosed imageMemberEquality imageElimination hyp_replacement computeAll functionEquality functionExtensionality cumulativity setEquality impliesLevelFunctionality andLevelFunctionality levelHypothesis impliesFunctionality addLevel

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].    (\#(bs)  =  \mSigma{}(x\mmember{}bag-remove-repeats(eq;bs)).  (\#x  in  bs))



Date html generated: 2019_10_16-AM-11_31_40
Last ObjectModification: 2018_08_22-AM-09_39_28

Theory : bags_2


Home Index