Nuprl Lemma : ni-max-nat

[n,m:ℕ].  (ni-max(n∞;m∞imax(n;m)∞ ∈ ℕ∞)


Proof




Definitions occuring in Statement :  ni-max: ni-max(f;g) nat2inf: n∞ nat-inf: ℕ∞ imax: imax(a;b) nat: uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat-inf: ℕ∞ all: x:A. B[x] implies:  Q prop: subtype_rel: A ⊆B nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] nat2inf: n∞ ni-max: ni-max(f;g) iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) guard: {T}
Lemmas referenced :  int_formula_prop_less_lemma intformless_wf decidable__lt imax_strict_ub assert_of_lt_int assert_of_bor iff_weakening_uiff iff_transitivity iff_wf less_than_wf or_wf imax_wf lt_int_wf bor_wf iff_imp_equal_bool nat_wf all_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties nat2inf_wf ni-max_wf assert_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis because_Cache sqequalRule addEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll functionEquality axiomEquality functionExtensionality addLevel productElimination impliesFunctionality independent_functionElimination orFunctionality inlFormation inrFormation

Latex:
\mforall{}[n,m:\mBbbN{}].    (ni-max(n\minfty{};m\minfty{})  =  imax(n;m)\minfty{})



Date html generated: 2016_05_15-PM-01_48_08
Last ObjectModification: 2016_01_15-PM-11_16_20

Theory : basic


Home Index