Nuprl Lemma : is-list-if-has-value-rec-snd

[t:Base]. (is-list-if-has-value-rec(snd(t))) supposing (is-list-if-has-value-rec(t) and (t ~ <fst(t), snd(t)>))


Proof




Definitions occuring in Statement :  is-list-if-has-value-rec: is-list-if-has-value-rec(t) uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) pair: <a, b> base: Base sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T is-list-if-has-value-rec: is-list-if-has-value-rec(t) is-list-if-has-value-fun: is-list-if-has-value-fun(t;n) nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: has-value: (a)↓ pi2: snd(t) sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff
Lemmas referenced :  nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf primrec-unroll nat_wf is-list-if-has-value-rec_wf base_wf eq_int_wf intformeq_wf int_formula_prop_eq_lemma assert_wf bnot_wf not_wf equal-wf-T-base has-value_wf_base is-exception_wf add-subtract-cancel is-list-if-has-value-fun-ax-mem bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction sqequalAxiom hypothesis thin rename sqequalHypSubstitution sqequalRule isectElimination dependent_set_memberEquality addEquality setElimination hypothesisEquality natural_numberEquality extract_by_obid dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll because_Cache sqequalIntensionalEquality baseApply closedConclusion baseClosed equalityTransitivity equalitySymmetry divergentSqle sqleReflexivity instantiate cumulativity independent_functionElimination productElimination lambdaFormation impliesFunctionality

Latex:
\mforall{}[t:Base]
    (is-list-if-has-value-rec(snd(t)))  supposing 
          (is-list-if-has-value-rec(t)  and 
          (t  \msim{}  <fst(t),  snd(t)>))



Date html generated: 2018_05_21-PM-10_19_32
Last ObjectModification: 2017_07_26-PM-06_37_03

Theory : eval!all


Home Index