Nuprl Lemma : is-list-if-has-value-fun-ax-mem

[t:Base]. ∀[n:ℕ].  Ax ∈ is-list-if-has-value-fun(t;n) supposing is-list-if-has-value-fun(t;n)


Proof




Definitions occuring in Statement :  is-list-if-has-value-fun: is-list-if-has-value-fun(t;n) nat: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T base: Base axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: is-list-if-has-value-fun: is-list-if-has-value-fun(t;n) unit: Unit decidable: Dec(P) or: P ∨ Q exposed-it: exposed-it bool: 𝔹 it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  subtype_rel: A ⊆B has-value: (a)↓ pi2: snd(t) iff: ⇐⇒ Q rev_implies:  Q true: True
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf is-list-if-has-value-fun_wf base_wf primrec0_lemma unit_wf2 le_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_wf assert_wf bnot_wf not_wf equal-wf-base int_subtype_base has-value-implies-dec-ispair-2 has-value_wf_base bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot isaxiom-implies
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality unionElimination because_Cache equalityElimination productElimination promote_hyp instantiate cumulativity applyEquality baseClosed baseApply closedConclusion impliesFunctionality

Latex:
\mforall{}[t:Base].  \mforall{}[n:\mBbbN{}].    Ax  \mmember{}  is-list-if-has-value-fun(t;n)  supposing  is-list-if-has-value-fun(t;n)



Date html generated: 2018_05_21-PM-10_19_24
Last ObjectModification: 2017_07_26-PM-06_36_59

Theory : eval!all


Home Index